pre-passage f32

This commit is contained in:
2025-07-21 16:32:27 +02:00
parent db8e876c1c
commit 044f9781de
7 changed files with 320 additions and 127 deletions

View File

@@ -35,4 +35,4 @@ moka = {version = "0.12", features = ["future"] }
arc-swap = "1.7"
crossbeam-channel = "0.5"
kanal = "0.1"
rubato = "0.16.2"
rubato = "0.16"

View File

@@ -4,7 +4,7 @@ use std::thread;
use std::thread::JoinHandle;
use cpal::{default_host, BufferSize, Device, SampleRate, Stream, StreamConfig, SupportedStreamConfig};
use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
use rubato::{FftFixedInOut, Resampler};
// ✅ Supprimé rubato complètement !
use crate::core::opus::AudioOpus;
use crate::domain::event::{Event, EventBus};
use crate::utils::ringbuf::RingBuffer;
@@ -18,7 +18,7 @@ pub struct AudioCapture {
event_bus: EventBus,
microphone: Microphone,
running: Arc<AtomicBool>,
ring_buffer: RingBuffer<f32>,
ring_buffer: RingBuffer<i16>,
steam: Option<Stream>,
worker: Option<JoinHandle<()>>,
}
@@ -26,9 +26,7 @@ pub struct AudioCapture {
impl Microphone {
pub fn new(device: Device) -> Self {
println!("Initializing microphone with device: {}", device.name().unwrap_or_else(|_| "Unknown".to_string()));
Self {
device
}
Self { device }
}
pub fn default() -> Self {
@@ -54,17 +52,16 @@ impl Microphone {
StreamConfig {
channels,
sample_rate: SampleRate(48_000),
sample_rate: SampleRate(48_000), // ✅ Force 48kHz
buffer_size: BufferSize::Default,
}
}
pub fn build_stream<F>(&self, callback: F) -> Stream
where
F: FnMut(&[f32], &cpal::InputCallbackInfo) + Send + 'static,
F: FnMut(&[i16], &cpal::InputCallbackInfo) + Send + 'static,
{
let config = self.get_stream_config();
self.device.build_input_stream(
&config,
callback,
@@ -73,7 +70,6 @@ impl Microphone {
).unwrap()
}
// helpers
pub fn get_supported_channels(&self) -> Vec<u16> {
self.device.supported_input_configs()
.map(|configs| configs.map(|c| c.channels()).collect())
@@ -108,9 +104,7 @@ impl AudioCapture {
let writer = self.ring_buffer.writer();
let stream_running = self.running.clone();
let stream = self.microphone.build_stream(move |data, _| {
if !stream_running.load(Ordering::Relaxed){
return;
}
if !stream_running.load(Ordering::Relaxed) { return; }
writer.push_slice_overwrite(data);
});
stream.play().unwrap();
@@ -126,74 +120,57 @@ impl AudioCapture {
pub async fn stop(&mut self) {
println!("Stopping audio capture");
self.running.store(false, Ordering::Relaxed);
println!("Releasing audio stream");
self.steam = None;
self.ring_buffer.force_wake_up();
// code possiblement bloquant, wrap vers un thread tokio bloquant
if let Some(worker) = self.worker.take() {
println!("Waiting for audio processing worker to finish");
tokio::task::spawn_blocking(move || {
worker.join().unwrap();
}).await.unwrap();
}
println!("Clearing ring buffer");
self.ring_buffer.clear();
println!("Audio capture stopped");
}
fn run_processing_worker(&mut self){
fn run_processing_worker(&mut self) {
println!("Configuring audio processing worker");
let worker_running = self.running.clone();
let event_bus = self.event_bus.clone();
let input_config = self.microphone.get_input_config();
println!("Audio input config: sample rate: {}, channels: {}",
input_config.sample_rate().0, input_config.channels());
let stream_config = self.microphone.get_stream_config();
// création du worker opus
println!("Audio config: {} channels @ {}Hz",
stream_config.channels, stream_config.sample_rate.0);
// ✅ Simple : on assume 48kHz partout !
let opus = AudioOpus::new(48_000, 1, "voip");
let mut encoder = opus.create_encoder().unwrap();
// création du worker resampler
let source_rate = input_config.sample_rate().0 as usize;
let mut resampler = if source_rate != 48_000 {
Some(Self::create_resampler(source_rate)) // ✅ Corrigé
} else {
None
};
// création du ringbuffer
let reader = self.ring_buffer.reader();
// Démarrage du worker
println!("Spawning audio processing thread");
let stream_config = self.microphone.get_stream_config(); // ✅ Clone la config
self.worker = Some(thread::spawn(move || {
println!("Audio processing thread started");
let source_rate = stream_config.sample_rate.0 as usize; // ✅ Utilise stream_config
let frame_size = source_rate * 10 / 1000; // 10ms en échantillons
let mut raw_buffer = vec![0.0f32; frame_size];
let frame_size = 48_000 * 10 / 1000; // ✅ 10ms = 480 samples @ 48kHz
let mut raw_buffer = vec![0i16; frame_size];
while worker_running.load(Ordering::Relaxed) {
let read_count = reader.pop_slice_blocking(&mut raw_buffer);
if !worker_running.load(Ordering::Relaxed){
let _read_count = reader.pop_slice_blocking(&mut raw_buffer);
if !worker_running.load(Ordering::Relaxed) {
println!("Audio processing thread stopping");
break;
}
// Resampling : 441→480, 48000→480, 96000→480, etc.
// ✅ Processing ultra-simple
let processed_audio = Self::process_audio_frame(
&stream_config, // ✅ Utilise stream_config
resampler.as_mut(),
&stream_config,
&raw_buffer
);
// processed_audio est TOUJOURS 480 f32 (mono/48kHz)
// Events
event_bus.emit_sync(Event::AudioIn(processed_audio.clone()));
match encoder.encode(&processed_audio){
match encoder.encode(&processed_audio) {
Ok(encoded_data) => {
event_bus.emit_sync(Event::AudioEncoded(encoded_data))
}
@@ -205,49 +182,22 @@ impl AudioCapture {
}));
}
/// Standardise un buffer en mono float32 échantillonné à 48kHz.
fn process_audio_frame(
config: &StreamConfig,
resampler: Option<&mut FftFixedInOut<f32>>,
samples: &[f32],
) -> Vec<f32> {
// 1. Conversion mono d'abord
let mono = Self::sample_to_mono(config.channels as usize, samples);
// 2. Resampling si nécessaire
if let Some(resampler) = resampler {
let input: Vec<&[f32]> = vec![&mono];
match resampler.process(&input, None) {
Ok(mut output) => output.remove(0),
Err(e) => {
println!("Erreur de resampling: {e}");
mono // Fallback
}
}
} else {
mono
}
// ✅ Super simple : juste conversion mono
fn process_audio_frame(config: &StreamConfig, samples: &[i16]) -> Vec<i16> {
Self::sample_to_mono(config.channels as usize, samples)
}
fn sample_to_mono(input_channels: usize, samples: &[f32]) -> Vec<f32> {
fn sample_to_mono(input_channels: usize, samples: &[i16]) -> Vec<i16> {
if input_channels == 1 {
samples.to_vec()
}else{
} else {
samples
.chunks_exact(input_channels)
.map(|frame| frame.iter().copied().sum::<f32>() / input_channels as f32)
.map(|frame| {
let sum: i32 = frame.iter().map(|&s| s as i32).sum();
(sum / input_channels as i32) as i16
})
.collect()
}
}
// ✅ Méthode corrigée avec le bon nom
fn create_resampler(source_rate: usize) -> FftFixedInOut<f32> {
println!("Creating resampler: {}Hz -> 48kHz", source_rate);
FftFixedInOut::<f32>::new(
source_rate,
48_000,
512, // chunk size
1, // mono après conversion
).unwrap()
}
}

View File

@@ -65,8 +65,7 @@ impl AudioOpusEncoder {
Ok(Self{audio_opus, encoder})
}
// old version i16 en input, on garde au cas ou ...
pub fn encode_i16(&mut self, frames: &[i16]) -> Result<Vec<u8>, String> {
pub fn encode(&mut self, frames: &[i16]) -> Result<Vec<u8>, String> {
let mut output = vec![0u8; 1276]; // 1276 octets (la vraie worst-case recommandée par Opus).
let len = self.encoder.encode(frames, output.as_mut_slice())
.map_err(|e| format!("Erreur encodage: {:?}", e))?;
@@ -74,21 +73,6 @@ impl AudioOpusEncoder {
Ok(output)
}
pub fn encode(&mut self, frames: &[f32]) -> Result<Vec<u8>, String> {
// Conversion f32 -> i16 seulement ici
let frames_i16: Vec<i16> = frames.iter()
.map(|&sample| (sample * i16::MAX as f32)
.clamp(i16::MIN as f32, i16::MAX as f32) as i16)
.collect();
let mut output = vec![0u8; 1276];
let len = self.encoder.encode(&frames_i16, output.as_mut_slice())
.map_err(|e| format!("Erreur encodage: {:?}", e))?;
output.truncate(len);
Ok(output)
}
// 🔄 Approche avec buffer réutilisable (encore plus optimal)
fn encode_reuse(&mut self, frames: &[i16], output: &mut Vec<u8>) -> Result<usize, String> {
output.clear();
@@ -117,24 +101,10 @@ impl AudioOpusDecoder {
Ok(Self{audio_opus, decoder})
}
pub fn decode_i16(&mut self, frames: &[u8]) -> Result<Vec<i16>, String> {
pub fn decode(&mut self, frames: &[u8]) -> Result<Vec<i16>, String> {
let mut output = vec![0i16; 5760];
let len = self.decoder.decode(frames, output.as_mut_slice(), false).map_err(|e| format!("Erreur décodage: {:?}", e))?;
output.truncate(len);
Ok(output)
}
pub fn decode(&mut self, frames: &[u8]) -> Result<Vec<f32>, String> {
let mut output_i16 = vec![0i16; 5760];
let len = self.decoder.decode(frames, &mut output_i16, false)
.map_err(|e| format!("Erreur décodage: {:?}", e))?;
// Conversion i16 -> f32
let output_f32: Vec<f32> = output_i16[..len].iter()
.map(|&sample| sample as f32 / i16::MAX as f32)
.collect();
Ok(output_f32)
}
}

View File

@@ -40,13 +40,94 @@ impl Speaker {
}
pub fn get_stream_config(&self) -> StreamConfig {
let config = self.get_output_config();
let mut stream_config: StreamConfig = config.into();
stream_config.channels = 2;
stream_config.sample_rate = SampleRate(44100);
// stream_config.buffer_size = BufferSize::Fixed(960);
stream_config
// Lister toutes les configurations supportées
self.print_supported_configs();
StreamConfig {
channels: 2,
sample_rate: SampleRate(44100),
buffer_size: BufferSize::Default
}
}
pub fn print_supported_configs(&self) {
println!("\n=== CONFIGURATIONS AUDIO DISPONIBLES ===");
// Configuration par défaut
match self.device.default_output_config() {
Ok(config) => {
println!("📌 Configuration par défaut:");
println!(" Canaux: {}", config.channels());
println!(" Sample Rate: {} Hz", config.sample_rate().0);
println!(" Format: {:?}", config.sample_format());
println!(" Buffer Size: {:?}", config.buffer_size());
},
Err(e) => println!("❌ Impossible d'obtenir la config par défaut: {}", e)
}
// Toutes les configurations supportées
println!("\n📋 Toutes les configurations supportées:");
match self.device.supported_output_configs() {
Ok(configs) => {
for (i, config_range) in configs.enumerate() {
println!("\n Config #{}", i + 1);
println!(" Canaux: {}", config_range.channels());
println!(" Sample Rate: {} - {} Hz",
config_range.min_sample_rate().0,
config_range.max_sample_rate().0);
println!(" Format: {:?}", config_range.sample_format());
println!(" Buffer Size: {:?}", config_range.buffer_size());
// Suggestions de sample rates courants
let common_rates = [8000, 11025, 16000, 22050, 44100, 48000, 88200, 96000];
let mut supported_common = Vec::new();
for rate in common_rates {
if rate >= config_range.min_sample_rate().0 && rate <= config_range.max_sample_rate().0 {
supported_common.push(rate);
}
}
if !supported_common.is_empty() {
println!(" Sample rates courants supportés: {:?}", supported_common);
}
}
},
Err(e) => println!("❌ Impossible de lister les configs: {}", e)
}
// Informations sur le device
println!("\n🎧 Informations du device:");
if let Ok(name) = self.device.name() {
println!(" Nom: {}", name);
}
// Test de configurations spécifiques
println!("\n🧪 Test de configurations spécifiques:");
let test_configs = [
(44100, 1, "Mono 44.1kHz"),
(44100, 2, "Stéréo 44.1kHz"),
(48000, 1, "Mono 48kHz"),
(48000, 2, "Stéréo 48kHz"),
(22050, 2, "Stéréo 22.05kHz"),
];
for (sample_rate, channels, description) in test_configs {
let test_config = StreamConfig {
channels,
sample_rate: SampleRate(sample_rate),
buffer_size: BufferSize::Default
};
// Test si cette config est supportée (tentative de création d'un stream fictif)
let dummy_callback = |_: &mut [f32], _: &cpal::OutputCallbackInfo| {};
match self.device.build_output_stream(&test_config, dummy_callback, |_| {}, None) {
Ok(_) => println!("{} - SUPPORTÉ", description),
Err(_) => println!("{} - NON SUPPORTÉ", description),
}
}
println!("\n===========================================\n");
}
pub fn build_stream<F>(&self, callback: F) -> Stream
where
@@ -104,7 +185,6 @@ impl AudioPlayback {
if !stream_running.load(Ordering::Relaxed){
return;
}
println!("Audio playback stream tick");
let audio_mixer = mixer.read(data.len());
data.copy_from_slice(&audio_mixer);

View File

@@ -1,23 +1,20 @@
use bytes::Bytes;
// use tokio::sync::mpsc;
use crate::network::protocol::{MessageClient, MessageServer};
pub enum Event {
AppStarted,
AppStopped,
AudioIn(Vec<f32>),
AudioIn(Vec<i16>),
AudioEncoded(Vec<u8>),
PlaybackTick(usize),
// PlaybackRequest(Bytes),
NetConnected,
NetDisconnected,
NetIn(MessageServer),
NetOut(MessageClient),
UiStarted,
UiStopped,

View File

@@ -0,0 +1,195 @@
use rubato::{Resampler, SincFixedIn, SincInterpolationType, SincInterpolationParameters, WindowFunction};
use parking_lot::Mutex;
use std::sync::Arc;
/// Resampler audio optimisé avec rubato pour temps réel
#[derive(Clone)]
pub struct AudioResampler {
// État du resampler (recréé quand les paramètres changent)
state: Arc<Mutex<ResamplerState>>,
// Buffer de conversion réutilisable (évite allocations)
conversion_buffers: Arc<Mutex<ConversionBuffers>>,
}
struct ResamplerState {
resampler: Option<SincFixedIn<f32>>,
current_from_rate: u32,
current_to_rate: u32,
current_channels: usize,
}
struct ConversionBuffers {
f32_buffer: Vec<f32>,
planar_input: Vec<Vec<f32>>,
output_i16: Vec<i16>,
}
impl AudioResampler {
pub fn new() -> Self {
Self {
state: Arc::new(Mutex::new(ResamplerState {
resampler: None,
current_from_rate: 0,
current_to_rate: 0,
current_channels: 0,
})),
conversion_buffers: Arc::new(Mutex::new(ConversionBuffers {
f32_buffer: Vec::with_capacity(8192),
planar_input: Vec::new(),
output_i16: Vec::with_capacity(8192),
})),
}
}
/// Resample audio en gardant la continuité entre les chunks
pub fn resample(
&self,
input: &[i16],
from_sample_rate: u32,
to_sample_rate: u32,
channels: usize,
) -> Vec<i16> {
// ✅ Pas de conversion si même sample rate
if from_sample_rate == to_sample_rate || input.is_empty() {
return input.to_vec();
}
let mut state = self.state.lock();
let mut buffers = self.conversion_buffers.lock();
// 🔄 Recrée le resampler si configuration changée
let need_new_resampler = state.resampler.is_none()
|| state.current_from_rate != from_sample_rate
|| state.current_to_rate != to_sample_rate
|| state.current_channels != channels;
if state.resampler.is_none()
|| state.current_from_rate != from_sample_rate
|| state.current_to_rate != to_sample_rate
|| state.current_channels != channels {
match Self::create_resampler(from_sample_rate, to_sample_rate, channels) {
Ok(new_resampler) => {
state.resampler = Some(new_resampler);
state.current_from_rate = from_sample_rate;
state.current_to_rate = to_sample_rate;
state.current_channels = channels;
println!("🔧 Resampler reconfiguré: {}Hz → {}Hz, {} canaux",
from_sample_rate, to_sample_rate, channels);
}
Err(e) => {
eprintln!("❌ Erreur création resampler: {}", e);
return input.to_vec();
}
}
}
// 🚀 Processing avec le resampler
if let Some(ref mut resampler) = state.resampler {
match Self::process_with_resampler(resampler, input, channels, &mut buffers) {
Ok(output) => output,
Err(e) => {
eprintln!("❌ Erreur resampling: {}", e);
input.to_vec()
}
}
} else {
input.to_vec()
}
}
/// Crée un resampler optimisé pour votre cas d'usage
fn create_resampler(
from_rate: u32,
to_rate: u32,
channels: usize,
) -> Result<SincFixedIn<f32>, Box<dyn std::error::Error>> {
let ratio = to_rate as f64 / from_rate as f64;
// 🎯 Paramètres optimisés pour audio temps réel de qualité
let params = SincInterpolationParameters {
sinc_len: 256, // Bon compromis qualité/performance
f_cutoff: 0.95, // Anti-aliasing fort
interpolation: SincInterpolationType::Linear, // Plus rapide que Cubic
oversampling_factor: 256,
window: WindowFunction::BlackmanHarris2,
};
// Chunk size optimisé pour vos frames audio
let chunk_size = 1024; // Compatible avec vos frames de 960-1024 samples
Ok(SincFixedIn::<f32>::new(
ratio,
2.0, // Max ratio change pour stabilité
params,
chunk_size,
channels,
)?)
}
/// Process audio avec buffers réutilisables
fn process_with_resampler(
resampler: &mut SincFixedIn<f32>,
input: &[i16],
channels: usize,
buffers: &mut ConversionBuffers,
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
let frames = input.len() / channels;
// 🔄 1. Conversion i16 → f32 (réutilise buffer)
buffers.f32_buffer.clear();
buffers.f32_buffer.extend(input.iter().map(|&s| s as f32 / 32768.0));
// 🔄 2. Conversion interleaved → planar (réutilise buffers)
buffers.planar_input.clear();
buffers.planar_input.resize(channels, Vec::with_capacity(frames));
for ch in 0..channels {
buffers.planar_input[ch].clear();
}
for (frame_idx, frame) in buffers.f32_buffer.chunks_exact(channels).enumerate() {
for (ch, &sample) in frame.iter().enumerate() {
buffers.planar_input[ch].push(sample);
}
}
// 🎯 3. Resampling magique !
let output_planar = resampler.process(&buffers.planar_input, None)?;
// 🔄 4. Conversion planar → interleaved i16 (réutilise buffer)
let output_frames = output_planar[0].len();
buffers.output_i16.clear();
buffers.output_i16.reserve(output_frames * channels);
for frame_idx in 0..output_frames {
for ch in 0..channels {
let sample = (output_planar[ch][frame_idx] * 32767.0)
.round()
.clamp(-32768.0, 32767.0) as i16;
buffers.output_i16.push(sample);
}
}
Ok(buffers.output_i16.clone())
}
/// Réinitialise l'état interne (pour éviter glitches lors de changements)
pub fn reset(&self) {
let mut state = self.state.lock();
if let Some(ref mut resampler) = state.resampler {
let _ = resampler.reset();
}
println!("🔄 Resampler reset");
}
/// Version oneshot sans état (pour tests)
pub fn resample_oneshot(
input: &[i16],
from_rate: u32,
to_rate: u32,
channels: usize,
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
let resampler = AudioResampler::new();
Ok(resampler.resample(input, from_rate, to_rate, channels))
}
}

View File

@@ -1,3 +1,4 @@
pub mod ringbuf;
pub mod real_time_event;
pub mod shared_store;
pub mod audio_utils;