195 lines
6.7 KiB
Rust
195 lines
6.7 KiB
Rust
use rubato::{Resampler, SincFixedIn, SincInterpolationType, SincInterpolationParameters, WindowFunction};
|
|
use parking_lot::Mutex;
|
|
use std::sync::Arc;
|
|
|
|
/// Resampler audio optimisé avec rubato pour temps réel
|
|
#[derive(Clone)]
|
|
pub struct AudioResampler {
|
|
// État du resampler (recréé quand les paramètres changent)
|
|
state: Arc<Mutex<ResamplerState>>,
|
|
// Buffer de conversion réutilisable (évite allocations)
|
|
conversion_buffers: Arc<Mutex<ConversionBuffers>>,
|
|
}
|
|
|
|
struct ResamplerState {
|
|
resampler: Option<SincFixedIn<f32>>,
|
|
current_from_rate: u32,
|
|
current_to_rate: u32,
|
|
current_channels: usize,
|
|
}
|
|
|
|
struct ConversionBuffers {
|
|
f32_buffer: Vec<f32>,
|
|
planar_input: Vec<Vec<f32>>,
|
|
output_i16: Vec<i16>,
|
|
}
|
|
|
|
impl AudioResampler {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
state: Arc::new(Mutex::new(ResamplerState {
|
|
resampler: None,
|
|
current_from_rate: 0,
|
|
current_to_rate: 0,
|
|
current_channels: 0,
|
|
})),
|
|
conversion_buffers: Arc::new(Mutex::new(ConversionBuffers {
|
|
f32_buffer: Vec::with_capacity(8192),
|
|
planar_input: Vec::new(),
|
|
output_i16: Vec::with_capacity(8192),
|
|
})),
|
|
}
|
|
}
|
|
|
|
/// Resample audio en gardant la continuité entre les chunks
|
|
pub fn resample(
|
|
&self,
|
|
input: &[i16],
|
|
from_sample_rate: u32,
|
|
to_sample_rate: u32,
|
|
channels: usize,
|
|
) -> Vec<i16> {
|
|
// ✅ Pas de conversion si même sample rate
|
|
if from_sample_rate == to_sample_rate || input.is_empty() {
|
|
return input.to_vec();
|
|
}
|
|
|
|
let mut state = self.state.lock();
|
|
let mut buffers = self.conversion_buffers.lock();
|
|
|
|
// 🔄 Recrée le resampler si configuration changée
|
|
let need_new_resampler = state.resampler.is_none()
|
|
|| state.current_from_rate != from_sample_rate
|
|
|| state.current_to_rate != to_sample_rate
|
|
|| state.current_channels != channels;
|
|
|
|
if state.resampler.is_none()
|
|
|| state.current_from_rate != from_sample_rate
|
|
|| state.current_to_rate != to_sample_rate
|
|
|| state.current_channels != channels {
|
|
match Self::create_resampler(from_sample_rate, to_sample_rate, channels) {
|
|
Ok(new_resampler) => {
|
|
state.resampler = Some(new_resampler);
|
|
state.current_from_rate = from_sample_rate;
|
|
state.current_to_rate = to_sample_rate;
|
|
state.current_channels = channels;
|
|
println!("🔧 Resampler reconfiguré: {}Hz → {}Hz, {} canaux",
|
|
from_sample_rate, to_sample_rate, channels);
|
|
}
|
|
Err(e) => {
|
|
eprintln!("❌ Erreur création resampler: {}", e);
|
|
return input.to_vec();
|
|
}
|
|
}
|
|
}
|
|
|
|
// 🚀 Processing avec le resampler
|
|
if let Some(ref mut resampler) = state.resampler {
|
|
match Self::process_with_resampler(resampler, input, channels, &mut buffers) {
|
|
Ok(output) => output,
|
|
Err(e) => {
|
|
eprintln!("❌ Erreur resampling: {}", e);
|
|
input.to_vec()
|
|
}
|
|
}
|
|
} else {
|
|
input.to_vec()
|
|
}
|
|
}
|
|
|
|
/// Crée un resampler optimisé pour votre cas d'usage
|
|
fn create_resampler(
|
|
from_rate: u32,
|
|
to_rate: u32,
|
|
channels: usize,
|
|
) -> Result<SincFixedIn<f32>, Box<dyn std::error::Error>> {
|
|
let ratio = to_rate as f64 / from_rate as f64;
|
|
|
|
// 🎯 Paramètres optimisés pour audio temps réel de qualité
|
|
let params = SincInterpolationParameters {
|
|
sinc_len: 256, // Bon compromis qualité/performance
|
|
f_cutoff: 0.95, // Anti-aliasing fort
|
|
interpolation: SincInterpolationType::Linear, // Plus rapide que Cubic
|
|
oversampling_factor: 256,
|
|
window: WindowFunction::BlackmanHarris2,
|
|
};
|
|
|
|
// Chunk size optimisé pour vos frames audio
|
|
let chunk_size = 1024; // Compatible avec vos frames de 960-1024 samples
|
|
|
|
Ok(SincFixedIn::<f32>::new(
|
|
ratio,
|
|
2.0, // Max ratio change pour stabilité
|
|
params,
|
|
chunk_size,
|
|
channels,
|
|
)?)
|
|
}
|
|
|
|
/// Process audio avec buffers réutilisables
|
|
fn process_with_resampler(
|
|
resampler: &mut SincFixedIn<f32>,
|
|
input: &[i16],
|
|
channels: usize,
|
|
buffers: &mut ConversionBuffers,
|
|
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
|
|
let frames = input.len() / channels;
|
|
|
|
// 🔄 1. Conversion i16 → f32 (réutilise buffer)
|
|
buffers.f32_buffer.clear();
|
|
buffers.f32_buffer.extend(input.iter().map(|&s| s as f32 / 32768.0));
|
|
|
|
// 🔄 2. Conversion interleaved → planar (réutilise buffers)
|
|
buffers.planar_input.clear();
|
|
buffers.planar_input.resize(channels, Vec::with_capacity(frames));
|
|
|
|
for ch in 0..channels {
|
|
buffers.planar_input[ch].clear();
|
|
}
|
|
|
|
for (frame_idx, frame) in buffers.f32_buffer.chunks_exact(channels).enumerate() {
|
|
for (ch, &sample) in frame.iter().enumerate() {
|
|
buffers.planar_input[ch].push(sample);
|
|
}
|
|
}
|
|
|
|
// 🎯 3. Resampling magique !
|
|
let output_planar = resampler.process(&buffers.planar_input, None)?;
|
|
|
|
// 🔄 4. Conversion planar → interleaved i16 (réutilise buffer)
|
|
let output_frames = output_planar[0].len();
|
|
buffers.output_i16.clear();
|
|
buffers.output_i16.reserve(output_frames * channels);
|
|
|
|
for frame_idx in 0..output_frames {
|
|
for ch in 0..channels {
|
|
let sample = (output_planar[ch][frame_idx] * 32767.0)
|
|
.round()
|
|
.clamp(-32768.0, 32767.0) as i16;
|
|
buffers.output_i16.push(sample);
|
|
}
|
|
}
|
|
|
|
Ok(buffers.output_i16.clone())
|
|
}
|
|
|
|
/// Réinitialise l'état interne (pour éviter glitches lors de changements)
|
|
pub fn reset(&self) {
|
|
let mut state = self.state.lock();
|
|
if let Some(ref mut resampler) = state.resampler {
|
|
let _ = resampler.reset();
|
|
}
|
|
println!("🔄 Resampler reset");
|
|
}
|
|
|
|
/// Version oneshot sans état (pour tests)
|
|
pub fn resample_oneshot(
|
|
input: &[i16],
|
|
from_rate: u32,
|
|
to_rate: u32,
|
|
channels: usize,
|
|
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
|
|
let resampler = AudioResampler::new();
|
|
Ok(resampler.resample(input, from_rate, to_rate, channels))
|
|
}
|
|
} |