Files
ox_speak_client/src-tauri/src/utils/audio_utils.rs
2025-07-21 16:32:27 +02:00

195 lines
6.7 KiB
Rust

use rubato::{Resampler, SincFixedIn, SincInterpolationType, SincInterpolationParameters, WindowFunction};
use parking_lot::Mutex;
use std::sync::Arc;
/// Resampler audio optimisé avec rubato pour temps réel
#[derive(Clone)]
pub struct AudioResampler {
// État du resampler (recréé quand les paramètres changent)
state: Arc<Mutex<ResamplerState>>,
// Buffer de conversion réutilisable (évite allocations)
conversion_buffers: Arc<Mutex<ConversionBuffers>>,
}
struct ResamplerState {
resampler: Option<SincFixedIn<f32>>,
current_from_rate: u32,
current_to_rate: u32,
current_channels: usize,
}
struct ConversionBuffers {
f32_buffer: Vec<f32>,
planar_input: Vec<Vec<f32>>,
output_i16: Vec<i16>,
}
impl AudioResampler {
pub fn new() -> Self {
Self {
state: Arc::new(Mutex::new(ResamplerState {
resampler: None,
current_from_rate: 0,
current_to_rate: 0,
current_channels: 0,
})),
conversion_buffers: Arc::new(Mutex::new(ConversionBuffers {
f32_buffer: Vec::with_capacity(8192),
planar_input: Vec::new(),
output_i16: Vec::with_capacity(8192),
})),
}
}
/// Resample audio en gardant la continuité entre les chunks
pub fn resample(
&self,
input: &[i16],
from_sample_rate: u32,
to_sample_rate: u32,
channels: usize,
) -> Vec<i16> {
// ✅ Pas de conversion si même sample rate
if from_sample_rate == to_sample_rate || input.is_empty() {
return input.to_vec();
}
let mut state = self.state.lock();
let mut buffers = self.conversion_buffers.lock();
// 🔄 Recrée le resampler si configuration changée
let need_new_resampler = state.resampler.is_none()
|| state.current_from_rate != from_sample_rate
|| state.current_to_rate != to_sample_rate
|| state.current_channels != channels;
if state.resampler.is_none()
|| state.current_from_rate != from_sample_rate
|| state.current_to_rate != to_sample_rate
|| state.current_channels != channels {
match Self::create_resampler(from_sample_rate, to_sample_rate, channels) {
Ok(new_resampler) => {
state.resampler = Some(new_resampler);
state.current_from_rate = from_sample_rate;
state.current_to_rate = to_sample_rate;
state.current_channels = channels;
println!("🔧 Resampler reconfiguré: {}Hz → {}Hz, {} canaux",
from_sample_rate, to_sample_rate, channels);
}
Err(e) => {
eprintln!("❌ Erreur création resampler: {}", e);
return input.to_vec();
}
}
}
// 🚀 Processing avec le resampler
if let Some(ref mut resampler) = state.resampler {
match Self::process_with_resampler(resampler, input, channels, &mut buffers) {
Ok(output) => output,
Err(e) => {
eprintln!("❌ Erreur resampling: {}", e);
input.to_vec()
}
}
} else {
input.to_vec()
}
}
/// Crée un resampler optimisé pour votre cas d'usage
fn create_resampler(
from_rate: u32,
to_rate: u32,
channels: usize,
) -> Result<SincFixedIn<f32>, Box<dyn std::error::Error>> {
let ratio = to_rate as f64 / from_rate as f64;
// 🎯 Paramètres optimisés pour audio temps réel de qualité
let params = SincInterpolationParameters {
sinc_len: 256, // Bon compromis qualité/performance
f_cutoff: 0.95, // Anti-aliasing fort
interpolation: SincInterpolationType::Linear, // Plus rapide que Cubic
oversampling_factor: 256,
window: WindowFunction::BlackmanHarris2,
};
// Chunk size optimisé pour vos frames audio
let chunk_size = 1024; // Compatible avec vos frames de 960-1024 samples
Ok(SincFixedIn::<f32>::new(
ratio,
2.0, // Max ratio change pour stabilité
params,
chunk_size,
channels,
)?)
}
/// Process audio avec buffers réutilisables
fn process_with_resampler(
resampler: &mut SincFixedIn<f32>,
input: &[i16],
channels: usize,
buffers: &mut ConversionBuffers,
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
let frames = input.len() / channels;
// 🔄 1. Conversion i16 → f32 (réutilise buffer)
buffers.f32_buffer.clear();
buffers.f32_buffer.extend(input.iter().map(|&s| s as f32 / 32768.0));
// 🔄 2. Conversion interleaved → planar (réutilise buffers)
buffers.planar_input.clear();
buffers.planar_input.resize(channels, Vec::with_capacity(frames));
for ch in 0..channels {
buffers.planar_input[ch].clear();
}
for (frame_idx, frame) in buffers.f32_buffer.chunks_exact(channels).enumerate() {
for (ch, &sample) in frame.iter().enumerate() {
buffers.planar_input[ch].push(sample);
}
}
// 🎯 3. Resampling magique !
let output_planar = resampler.process(&buffers.planar_input, None)?;
// 🔄 4. Conversion planar → interleaved i16 (réutilise buffer)
let output_frames = output_planar[0].len();
buffers.output_i16.clear();
buffers.output_i16.reserve(output_frames * channels);
for frame_idx in 0..output_frames {
for ch in 0..channels {
let sample = (output_planar[ch][frame_idx] * 32767.0)
.round()
.clamp(-32768.0, 32767.0) as i16;
buffers.output_i16.push(sample);
}
}
Ok(buffers.output_i16.clone())
}
/// Réinitialise l'état interne (pour éviter glitches lors de changements)
pub fn reset(&self) {
let mut state = self.state.lock();
if let Some(ref mut resampler) = state.resampler {
let _ = resampler.reset();
}
println!("🔄 Resampler reset");
}
/// Version oneshot sans état (pour tests)
pub fn resample_oneshot(
input: &[i16],
from_rate: u32,
to_rate: u32,
channels: usize,
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
let resampler = AudioResampler::new();
Ok(resampler.resample(input, from_rate, to_rate, channels))
}
}