f32 instead of i16

This commit is contained in:
2025-07-22 02:51:37 +02:00
parent 43f8d38cb2
commit f2b7e6e689
3 changed files with 180 additions and 97 deletions

View File

@@ -4,48 +4,82 @@ use std::sync::Arc;
use arc_swap::ArcSwap;
use cpal::SampleRate;
use crate::domain::audio_client::AudioClientManager;
use crate::utils::audio_utils::{AudioResampler, AudioTools};
use crate::utils::ringbuf::{RingBufReader, RingBufWriter, RingBuffer};
#[derive(Clone)]
pub struct AudioMixer {
audio_client_manager: AudioClientManager,
buffer_writer: Arc<RingBufWriter<i16>>,
buffer_reader: Arc<RingBufReader<i16>>,
sample_rate: SampleRate,
channels: usize,
buffer_writer: Arc<RingBufWriter<f32>>,
buffer_reader: Arc<RingBufReader<f32>>,
internal_sample_rate: usize,
output_channels: usize,
output_sample_rate: usize,
resampler: AudioResampler,
}
impl AudioMixer {
pub fn new(sample_rate: usize, channels: usize, audio_client_manager: AudioClientManager) -> Self {
pub fn new(output_sample_rate: usize, output_channels: usize, audio_client_manager: AudioClientManager) -> Self {
let (buffer_writer, buffer_reader) = RingBuffer::new(2048).split();
Self {
audio_client_manager,
buffer_writer: Arc::new(buffer_writer),
buffer_reader: Arc::new(buffer_reader)
buffer_reader: Arc::new(buffer_reader),
internal_sample_rate: 48000,
output_sample_rate,
output_channels,
resampler: AudioResampler::new(),
}
}
pub fn mix_next_frame(&self, size: usize) {
let mut frames = Vec::<Vec<f32>>::new();
let users_audio = self.audio_client_manager.take_audio_collection(size/2).into_iter()
.map(|audio| AudioMixer::mono_to_stereo(audio))
.collect::<Vec<Vec<i16>>>();
pub fn mix_next_frame(&self, output_size: usize) {
// 1. Calcule combien de samples 48kHz on doit récupérer
let ratio = self.internal_sample_rate as f32 / self.output_sample_rate as f32;
let internal_frames_needed = ((output_size / self.output_channels) as f32 * ratio).ceil() as usize;
// 2. Récupère les données utilisateurs (48kHz mono)
let users_audio = self.audio_client_manager.take_audio_collection(internal_frames_needed);
frames.extend_from_slice(&users_audio);
// Récupérer tous les sons des notifications (pas encore dev)
let mixed_frame = if frames.is_empty() {
vec![0i16; size]
// 3. Mix en 48kHz mono
let mixed_internal = if users_audio.is_empty() {
vec![0f32; internal_frames_needed]
} else {
Self::mix_frames(&frames, size)
AudioTools::mix_frames(&users_audio, internal_frames_needed)
};
self.buffer_writer.push_slice_overwrite(&mixed_frame);
// 3. Mix en 48kHz mono (résultat en f32)
let mixed_internal = if users_audio.is_empty() {
vec![0.0f32; internal_frames_needed]
} else {
AudioTools::mix_frames(&users_audio, internal_frames_needed)
};
// 4. Resample 48kHz -> output_rate si nécessaire
let resampled = if self.internal_sample_rate != self.output_sample_rate {
self.resampler.resample(
&mixed_internal,
self.internal_sample_rate,
self.output_sample_rate,
1 // mono
)
} else {
mixed_internal
};
// 5. Convert mono -> output_channels
let final_frame = AudioTools::change_channel_count(
&resampled,
1,
self.output_channels
);
// 6. Écrit dans le ringbuffer (pas besoin de resize exacte)
self.buffer_writer.push_slice_overwrite(&final_frame);
}
pub fn read(&self, size: usize) -> Vec<i16> {
let mut data = vec![0i16; size];
pub fn read(&self, size: usize) -> Vec<f32> {
let mut data = vec![0f32; size];
// Essaie de pop autant d'échantillons que possible
let read = self.buffer_reader.pop_slice(&mut data);
// Si on n'a pas tout eu, les éléments restants sont déjà à 0
@@ -54,36 +88,3 @@ impl AudioMixer {
}
impl AudioMixer {
fn mono_to_stereo(mono_samples: Vec<i16>) -> Vec<i16> {
let mut stereo_data = Vec::with_capacity(mono_samples.len() * 2);
// Chaque échantillon mono devient deux échantillons stéréo identiques
for sample in mono_samples {
stereo_data.push(sample); // Canal gauche
stereo_data.push(sample); // Canal droit
}
stereo_data
}
fn mix_frames(frames: &[Vec<i16>], size: usize) -> Vec<i16> {
let mut mixed = vec![0i32; size];
for frame in frames {
for (i, &sample) in frame.iter().enumerate() {
if i < size {
mixed[i] += sample as i32;
}
}
}
let count = frames.len().max(1) as i32; // éviter la division par zéro
mixed
.into_iter()
.map(|sample| (sample / count).clamp(i16::MIN as i32, i16::MAX as i32) as i16)
.collect()
}
}

View File

@@ -127,7 +127,7 @@ impl Speaker {
pub fn build_stream<F>(&self, callback: F) -> Stream
where
F: FnMut(&mut [i16], &cpal::OutputCallbackInfo) + Send + 'static,
F: FnMut(&mut [f32], &cpal::OutputCallbackInfo) + Send + 'static,
{
let config = self.get_stream_config();

View File

@@ -77,15 +77,15 @@ pub struct AudioResampler {
struct ResamplerState {
resampler: Option<SincFixedIn<f32>>,
current_from_rate: u32,
current_to_rate: u32,
current_from_rate: usize,
current_to_rate: usize,
current_channels: usize,
}
struct ConversionBuffers {
f32_buffer: Vec<f32>,
planar_input: Vec<Vec<f32>>,
output_i16: Vec<i16>,
planar_output_buffer: Vec<Vec<f32>>, // Ajouté pour éviter des allocs
}
impl AudioResampler {
@@ -100,19 +100,19 @@ impl AudioResampler {
conversion_buffers: Arc::new(Mutex::new(ConversionBuffers {
f32_buffer: Vec::with_capacity(8192),
planar_input: Vec::new(),
output_i16: Vec::with_capacity(8192),
planar_output_buffer: Vec::new(),
})),
}
}
/// Resample audio en gardant la continuité entre les chunks
pub fn resample(
/// Resample audio générique - fonctionne avec i16 et f32
pub fn resample<T: AudioSample>(
&self,
input: &[i16],
from_sample_rate: u32,
to_sample_rate: u32,
input: &[T],
from_sample_rate: usize,
to_sample_rate: usize,
channels: usize,
) -> Vec<i16> {
) -> Vec<T> {
// ✅ Pas de conversion si même sample rate
if from_sample_rate == to_sample_rate || input.is_empty() {
return input.to_vec();
@@ -122,11 +122,6 @@ impl AudioResampler {
let mut buffers = self.conversion_buffers.lock();
// 🔄 Recrée le resampler si configuration changée
let need_new_resampler = state.resampler.is_none()
|| state.current_from_rate != from_sample_rate
|| state.current_to_rate != to_sample_rate
|| state.current_channels != channels;
if state.resampler.is_none()
|| state.current_from_rate != from_sample_rate
|| state.current_to_rate != to_sample_rate
@@ -149,7 +144,7 @@ impl AudioResampler {
// 🚀 Processing avec le resampler
if let Some(ref mut resampler) = state.resampler {
match Self::process_with_resampler(resampler, input, channels, &mut buffers) {
match Self::process_with_resampler_generic(resampler, input, channels, &mut buffers) {
Ok(output) => output,
Err(e) => {
eprintln!("❌ Erreur resampling: {}", e);
@@ -163,8 +158,8 @@ impl AudioResampler {
/// Crée un resampler optimisé pour votre cas d'usage
fn create_resampler(
from_rate: u32,
to_rate: u32,
from_rate: usize,
to_rate: usize,
channels: usize,
) -> Result<SincFixedIn<f32>, Box<dyn std::error::Error>> {
let ratio = to_rate as f64 / from_rate as f64;
@@ -190,20 +185,20 @@ impl AudioResampler {
)?)
}
/// Process audio avec buffers réutilisables
fn process_with_resampler(
/// Process audio générique avec buffers réutilisables
fn process_with_resampler_generic<T: AudioSample>(
resampler: &mut SincFixedIn<f32>,
input: &[i16],
input: &[T],
channels: usize,
buffers: &mut ConversionBuffers,
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
) -> Result<Vec<T>, Box<dyn std::error::Error>> {
let frames = input.len() / channels;
// 🔄 1. Conversion i16 → f32 (utilise buffer)
// 🔄 1. Conversion vers f32 (utilise AudioSample trait)
buffers.f32_buffer.clear();
buffers.f32_buffer.extend(input.iter().map(|&s| s as f32 / 32768.0));
buffers.f32_buffer.extend(input.iter().map(|sample| sample.to_f32()));
// 🔄 2. Conversion interleaved → planar (réutilise buffers)
// 🔄 2. Conversion interleaved → planar
buffers.planar_input.clear();
buffers.planar_input.resize(channels, Vec::with_capacity(frames));
@@ -211,30 +206,117 @@ impl AudioResampler {
buffers.planar_input[ch].clear();
}
for (frame_idx, frame) in buffers.f32_buffer.chunks_exact(channels).enumerate() {
for frame in buffers.f32_buffer.chunks_exact(channels) {
for (ch, &sample) in frame.iter().enumerate() {
buffers.planar_input[ch].push(sample);
}
}
// 🎯 3. Resampling magique !
// 🎯 3. Resampling magique ! (Rubato travaille directement en f32)
let output_planar = resampler.process(&buffers.planar_input, None)?;
// 🔄 4. Conversion planar → interleaved i16 (réutilise buffer)
// 🔄 4. Conversion planar → interleaved avec type générique
let output_frames = output_planar[0].len();
buffers.output_i16.clear();
buffers.output_i16.reserve(output_frames * channels);
let mut output = Vec::with_capacity(output_frames * channels);
for frame_idx in 0..output_frames {
for ch in 0..channels {
let sample = (output_planar[ch][frame_idx] * 32767.0)
.round()
.clamp(-32768.0, 32767.0) as i16;
buffers.output_i16.push(sample);
let f32_sample = output_planar[ch][frame_idx];
// Utilise AudioSample pour reconvertir au format d'origine
let converted_sample = T::from_f32(f32_sample).clamp_audio();
output.push(converted_sample);
}
}
Ok(buffers.output_i16.clone())
Ok(output)
}
/// Version spécialisée pour f32 (plus efficace, évite conversions inutiles)
pub fn resample_f32(
&self,
input: &[f32],
from_sample_rate: usize,
to_sample_rate: usize,
channels: usize,
) -> Vec<f32> {
// ✅ Pas de conversion si même sample rate
if from_sample_rate == to_sample_rate || input.is_empty() {
return input.to_vec();
}
let mut state = self.state.lock();
let mut buffers = self.conversion_buffers.lock();
// 🔄 Recrée le resampler si configuration changée
if state.resampler.is_none()
|| state.current_from_rate != from_sample_rate
|| state.current_to_rate != to_sample_rate
|| state.current_channels != channels {
match Self::create_resampler(from_sample_rate, to_sample_rate, channels) {
Ok(new_resampler) => {
state.resampler = Some(new_resampler);
state.current_from_rate = from_sample_rate;
state.current_to_rate = to_sample_rate;
state.current_channels = channels;
}
Err(e) => {
eprintln!("❌ Erreur création resampler: {}", e);
return input.to_vec();
}
}
}
// 🚀 Processing optimisé pour f32 (pas de conversion)
if let Some(ref mut resampler) = state.resampler {
match Self::process_f32_direct(resampler, input, channels, &mut buffers) {
Ok(output) => output,
Err(e) => {
eprintln!("❌ Erreur resampling f32: {}", e);
input.to_vec()
}
}
} else {
input.to_vec()
}
}
/// Processing optimisé pour f32 natif (pas de conversions)
fn process_f32_direct(
resampler: &mut SincFixedIn<f32>,
input: &[f32],
channels: usize,
buffers: &mut ConversionBuffers,
) -> Result<Vec<f32>, Box<dyn std::error::Error>> {
let frames = input.len() / channels;
// 🔄 1. Conversion interleaved → planar (pas de conversion de format!)
buffers.planar_input.clear();
buffers.planar_input.resize(channels, Vec::with_capacity(frames));
for ch in 0..channels {
buffers.planar_input[ch].clear();
}
for frame in input.chunks_exact(channels) {
for (ch, &sample) in frame.iter().enumerate() {
buffers.planar_input[ch].push(sample);
}
}
// 🎯 2. Resampling direct !
let output_planar = resampler.process(&buffers.planar_input, None)?;
// 🔄 3. Conversion planar → interleaved (pas de conversion de format!)
let output_frames = output_planar[0].len();
let mut output = Vec::with_capacity(output_frames * channels);
for frame_idx in 0..output_frames {
for ch in 0..channels {
output.push(output_planar[ch][frame_idx]);
}
}
Ok(output)
}
/// Réinitialise l'état interne (pour éviter glitches lors de changements)
@@ -246,13 +328,13 @@ impl AudioResampler {
println!("🔄 Resampler reset");
}
/// Version oneshot sans état (pour tests)
pub fn resample_oneshot(
input: &[i16],
from_rate: u32,
to_rate: u32,
/// Version oneshot générique sans état (pour tests)
pub fn resample_oneshot<T: AudioSample>(
input: &[T],
from_rate: usize,
to_rate: usize,
channels: usize,
) -> Result<Vec<i16>, Box<dyn std::error::Error>> {
) -> Result<Vec<T>, Box<dyn std::error::Error>> {
let resampler = AudioResampler::new();
Ok(resampler.resample(input, from_rate, to_rate, channels))
}