

Steve Smith

DevIQ

PUBLISHED BY

DevDiv, .NET and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2017 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission

of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this book, including URL

and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group of companies. All

other marks are property of their respective owners.

Author:

 Steve Smith, Founder, DevIQ

Participants and reviewers (TBD):

Cesar de la Torre, Sr. PM, .NET product team, Microsoft

i

Contents
Introduction ... 1

Purpose .. 2

Who should use this guide ... 2

How you can use this guide .. 2

Characteristics of Modern Web Applications ... 3

Summary ... 3

Reference Application: eShopOnWeb ... 3

Cloud-Hosted and Scalable ... 4

Cross Platform ... 4

Modular and Loosely Coupled ... 5

Easily Tested with Automated Tests ... 5

Traditional and SPA Behaviors Supported ... 5

Simple Development and Deployment ... 5

Traditional ASP.NET and Web Forms ... 6

Choosing Between Traditional Web Apps and Single Page Apps (SPAs) .. 7

Summary ... 7

When to choose traditional web apps .. 8

When to choose SPAs .. 9

Decision table – Traditional Web or SPA .. 10

Architectural Principles .. 11

Summary .. 11

Common design principles ... 11

Separation of Concerns ... 11

Encapsulation ... 12

Dependency Inversion Principle ... 12

Explicit Dependencies Principle .. 12

Single Responsibility Principle .. 13

Don’t Repeat Yourself .. 13

ii

Persistence Ignorance .. 14

Bounded Contexts ... 14

Common Web Application Architectures ... 15

Summary .. 15

What is a monolithic application? .. 15

All-in-One applications... 15

What are layers? .. 16

Traditional “N-Layer” architecture applications .. 18

Clean architecture ... 21

Monolithic applications and Containers .. 24

Monolithic application deployed as a container ... 25

Common Client Side Web Technologies ... 27

Summary .. 27

HTML ... 27

CSS .. 28

JavaScript ... 29

Legacy Web Apps with jQuery .. 29

jQuery vs a SPA Framework ... 29

Angular SPAs.. 30

React .. 31

Choosing a SPA Framework ... 31

Developing ASP.NET Core MVC Apps ... 33

Summary .. 33

Mapping Requests to Responses ... 33

Working with Dependencies .. 36

Structuring the Application... 38

Security ... 46

Client Communication .. 50

Domain-Driven Design – Should You Apply It?.. 50

Deployment .. 50

Working with Data in ASP.NET Core Apps ... 51

Summary .. 51

SQL or NoSQL .. 52

Entity Framework Core (for relational databases) ... 51

EF or micro-ORM? .. 51

Azure DocDB... 52

Other Persistence Options .. 52

Testing ASP.NET Core MVC Apps... 53

iii

Summary .. 53

Kinds of Automated Tests ... 53

Unit Tests ... 53

Integration Tests ... 53

Functional Tests .. 53

Unit Testing ASP.NET Core Apps .. 53

Integration and Functional Tests .. 54

Development process for Azure-hosted ASP.NET Core applications ... 55

Vision ... 55

Development environment for ASP.NET Core apps ... 55

Development tools choices: IDE or editor.. 55

.NET languages and frameworks for ASP.NET Core ... 56

Development workflow for Azure-hosted ASP.NET Core apps .. 56

Workflow for developing Azure-hosted ASP.NET Core applications .. 56

Simplified workflow when developing containers with Visual Studio .. 61

Azure Hosting Recommendations for ASP.NET Core Web Apps .. 62

Summary .. 62

Web Applications .. 62

APIs ... 62

Logical Processes .. 63

Data .. 63

Key takeaways .. 64

1 Chapter 1

Introduction

S E C T I O N

1

Introduction
.NET Core and ASP.NET Core offer several advantages over traditional .NET development. You should

use .NET Core for your server applications if some or all of the following are important to your

application’s success:

• Cross-platform support

• Use of microservices

• Use of Docker containers

• High performance and scalability requirements

• Side-by-side versioning of .NET versions by application on the same server

Traditional .NET applications can and do support these requirements, but ASP.NET Core and .NET

Core have been optimized to offer improved support for the above scenarios.

More and more organizations are choosing to host their web applications in the cloud using services

like Microsoft Azure. You should consider hosting your application in the cloud if the following are

important to your application or organization:

• Reduced investment in data center costs (hardware, software, space, utilities, etc)

• Flexible pricing (pay based on usage, not for idle capacity)

• Extreme reliability

• Improved app mobility; easily change where and how your app is deployed

• Flexible capacity; scale up or down based on actual needs

Building web applications with ASP.NET Core, hosted in Microsoft Azure, offers numerous competitive

advantages over traditional alternatives. ASP.NET Core is optimized for modern web application

development practices and cloud hosting scenarios. In this guide, you will learn how to architect your

ASP.NET Core applications to best take advantage of these capabilities.

2 Chapter 1

Introduction

Purpose
This guide provides end-to-end guidance on building monolithic web applications using ASP.NET

Core and Azure.

This guide is complementary to the “Architecting and Developing Containerized and Microservice-

based Applications with .NET” which focuses more on Docker, Microservices, and Deployment of

Containers to host enterprise applications.

Architecting and Developing Containerized Microservice Based Apps in .NET

eBook
http://aka.ms/MicroservicesEbook

Sample Application
http://aka.ms/microservicesarchitecture

Who should use this guide

The audience for this guide is mainly developers, development leads, and architects who are

interested in building modern web applications using Microsoft technologies and services in the

cloud.

A secondary audience is technical decision makers who are already familiar ASP.NET and/or Azure and

are looking for information on whether it makes sense to upgrade to ASP.NET Core for new or

existing projects.

How you can use this guide

This guide has been condensed into a relatively small document that focuses on building web

applications with modern .NET technologies and Windows Azure. As such, it can be read in its entirety

to provide a foundation of understanding such applications and their technical considerations. The

guide, along with its sample application, can also serve as a starting point or reference. Use the

associated sample application as a template for your own applications, or to see how you might

organize your application’s component parts. Refer back to the guide’s principles and coverage of

architecture and technology options and decision considerations when weighing these choices for

your own application.

Feel free to forward this guide to your team to help ensure a common understanding of these

considerations and opportunities. Having everybody working from a common set of terminology and

underlying principles will help ensure consistent application of architectural patterns and practices.

References

Choosing between .NET Core and .NET Framework for server apps

https://docs.microsoft.com/en-us/dotnet/articles/standard/choosing-core-framework-server

http://aka.ms/MicroservicesEbook
http://aka.ms/microservicesarchitecture
https://docs.microsoft.com/en-us/dotnet/articles/standard/choosing-core-framework-server

3 Chapter 2

Characteristics of Modern Web Applications

Characteristics of
Modern Web
Applications

“… with proper design, the features come cheaply. This approach is arduous, but

continues to succeed.”

Dennis Ritchie

Summary

Modern web applications have higher user expectations and greater demands than ever before.

Today’s web apps are expected to be available 24/7 from anywhere in the world, and usable from

virtually any device or screen size. Web applications must be secure, flexible, and scalable to meet

spikes in demand. Increasingly, complex scenarios should be handled by rich user experiences built on

the client using JavaScript, and communicating efficiently through web APIs.

ASP.NET Core is optimized for modern web applications and cloud-based hosting scenarios. Its

modular design enables applications to depend on only those features they actually use, improving

application security and performance while reducing hosting resource requirements.

Reference Application: eShopOnWeb

This guidance includes a reference application, eShopOnWeb, that demonstrates some of the

principles and recommendations. The application is a simple online store which supports browsing

through a catalog of shirts, coffee mugs, and other marketing items. The reference application is

deliberately simple in order to make it easy to understand.

Figure 2-1. eShopOnWeb

4 Chapter 2

Characteristics of Modern Web Applications

Reference Application

eShopOnWeb

https://github.com/dotnet/eShopOnWeb

Cloud-Hosted and Scalable

ASP.NET Core is optimized for the cloud (public cloud, private cloud, any cloud) because it is low-

memory and high-throughput. The smaller footprint of ASP.NET Core applications means you can

host more of them on the same hardware, and you pay for fewer resources when using pay-as-you go

cloud hosting services. The higher-throughput means you can serve more customers from an

application given the same hardware, further reducing the need to invest in servers and hosting

infrastructure.

Cross Platform

ASP.NET Core is cross-platform, and can run on Linux and MacOS as well as Windows. This opens up

many new options for both development and deployment of apps built with ASP.NET Core. Docker

containers, which typically run Linux today, can host ASP.NET Core applications, allowing them to take

advantage of the benefits of containers and microservices (link to microservices and containers

ebook).

https://github.com/dotnet/eShopOnWeb

5 Chapter 2

Characteristics of Modern Web Applications

Modular and Loosely Coupled

NuGet packages are first-class citizens in .NET Core, and ASP.NET Core apps are composed of many

libraries through NuGet. This granularity of functionality helps ensure apps only depend on and

deploy functionality they actually require, reducing their footprint and security vulnerability surface

area.

ASP.NET Core also fully supports dependency injection, both internally and at the application level.

Interfaces can have multiple implementations that can be swapped out as needed. Dependency

injection allows apps to loosely couple to those interfaces, making them easier to extend, maintain,

and test.

Easily Tested with Automated Tests

ASP.NET Core applications support unit testing, and their loose coupling and support for dependency

injections makes it easy to swap infrastructure concerns with fake implementations for test purposes.

ASP.NET Core also ships a TestServer that can be used to host apps in memory. Functional tests can

then make requests to this in-memory server, exercising the full application stack (including

middleware, routing, model binding, filters, etc.) and receiving a response, all in a fraction of the time

it would take to host the app on a real server and make requests through the network layer. These

tests are especially easy to write, and valuable, for APIs, which are increasingly important in modern

web applications.

Traditional and SPA Behaviors Supported

Traditional web applications have involved little client-side behavior, but instead have relied on the

server for all navigation, queries, and updates the app might need to make. Each new operation made

by the user would be translated into a new web request, with the result being a full page reload in the

end user’s browser. Classic Model-View-Controller (MVC) frameworks typically follow this approach,

with each new request corresponding to a different controller action, which in turn would work with a

model and return a view. Some individual operations on a given page might be enhanced with AJAX

(Asynchronous JavaScript and XML) functionality, but the overall architecture of the app used many

different MVC views and URL endpoints.

Single Page Applications (SPAs), by contrast, involve very few dynamically generated server-side page

loads (if any). Many SPAs are initialized within a static HTML file which loads the necessary JavaScript

libraries to start and run the app. These apps make heavy usage of web APIs for their data needs, and

can provide much richer user experiences.

Many web applications involve a combination of traditional web application behavior (typically for

content) and SPAs (for interactivity). ASP.NET Core supports both MVC and web APIs in the same

application, using the same set of tools and underlying framework libraries.

Simple Development and Deployment

ASP.NET Core applications can be written using simple text editors and command line interfaces, or

full-featured development environments like Visual Studio. Monolithic applications are typically

deployed to a single endpoint. Deployments can easily be automated to occur as part of a continuous

integration (CI) and continuous delivery (CD) pipeline. In addition to traditional CI/CD tools, Windows

6 Chapter 2

Characteristics of Modern Web Applications

Azure has integrated support for git repositories and can automatically deploy updates as they are

made to a specified git branch or tag.

Traditional ASP.NET and Web Forms
In addition to ASP.NET Core, traditional ASP.NET 4.x continues to be a robust and reliable platform for

building web applications. ASP.NET supports MVC and Web API development models, as well as Web

Forms, which is well-suited to rich page-based application development and features a rich third-

party component ecosystem. Windows Azure has great longstanding support for ASP.NET 4.x

applications, and many developers are familiar with this platform.

References – Modern Web Applications

Introduction to ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/

Six Key Benefits of ASP.NET Core which make it Different and Better

http://www.trigent.com/blog/six-key-benefits-of-asp-net-core-1-0-which-make-it-different-better/

Testing in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/testing/

https://docs.microsoft.com/en-us/aspnet/core/
http://www.trigent.com/blog/six-key-benefits-of-asp-net-core-1-0-which-make-it-different-better/
https://docs.microsoft.com/en-us/aspnet/core/testing/

Section 3

7 Chapter 3

Choosing Between Traditional Web Apps and SPAs

Choosing
Between
Traditional Web
Apps and Single
Page Apps (SPAs)

“Atwood’s Law: Any application that can be written in JavaScript, will eventually be

written in JavaScript.”

Jeff Atwood

Summary

There are two general approaches to building web applications today: traditional web applications

that perform most of the application logic on the server, and single page applications (SPAs) that

perform most of the user interface logic in a web browser, communicating with the web server

primarily using web APIs. A hybrid approach is also possible, the simplest being host one or more rich

SPA-like sub-applications within a larger traditional web application.

8 Chapter 3

Choosing Between Traditional Web Apps and SPAs

You should use traditional web applications when:

• Your application’s client-side requirements are simple or even read-only.

• Your application needs to function in browsers without JavaScript support.

• Your team is unfamiliar with JavaScript or TypeScript development techniques.

You should use a SPA when:

• Your application must expose a rich user interface with many features.

• Your team is familiar with JavaScript and/or TypeScript development.

• Your application must already expose an API for other (internal or public) clients.

Additionally, SPA frameworks require greater architectural and security expertise. They experience

greater churn due to frequent updates and new frameworks than traditional web applications.

Configuring automated build and deployment processes and utilizing deployment options like

containers are more difficult with SPA applications than traditional web apps.

Improvements in user experience made possible by SPA model must be weighed against these

considerations.

When to choose traditional web apps

The following is a more detailed explanation of the previously-stated reasons for picking traditional

web applications.

Your application has simple, possibly read-only, client-side requirements

Many web applications are primarily consumed in a read-only fashion by the vast majority of their

users. Read-only (or read-mostly) applications tend to be much simpler than those that maintain and

manipulate a great deal of state. For example, a search engine might consist of a single entry point

with a textbox and a second page for displaying search results. Anonymous users can easily make

requests, and there is little need for client-side logic. Likewise, a blog or content management

system’s public-facing application usually consists mainly of content with little client-side behavior.

Such applications are easily built as traditional server-based web applications which perform logic on

the web server and render HTML to be displayed in the browser. The fact that each unique page of

the site has its own URL that can be bookmarked and indexed by search engines (by default, without

having to add this as a separate feature of the application) is also a clear benefit in such scenarios.

Your application needs to function in browsers without JavaScript support

Web applications that need to function in browsers with limited or no JavaScript support should be

written using traditional web app workflows (or at least be able to fall back to such behavior). SPAs

require client-side JavaScript in order to function; if it’s not available, SPAs are not a good choice.

Your team is unfamiliar with JavaScript or TypeScript development techniques

If your team is unfamiliar with JavaScript or TypeScript, but is familiar with server-side web application

development, then they will probably be able to deliver a traditional web app more quickly than a

SPA. Unless learning to program SPAs is a goal, or the user experience afforded by a SPA is required,

9 Chapter 3

Choosing Between Traditional Web Apps and SPAs

traditional web apps are a more productive choice for teams who are already familiar with building

them.

When to choose SPAs

The following is a more detailed explanation of when to choose a Single Page Applications style of

development for your web app.

Your application must expose a rich user interface with many features

SPAs can support rich client-side functionality that doesn’t require reloading the page as users take

actions or navigate between areas of the app. SPAs can load more quickly, fetching data in the

background, and individual user actions are more responsive since full page reloads are rare. SPAs can

support incremental updates, saving partially completed forms or documents without the user having

to click a button to submit a form. SPAs can support rich client-side behaviors, such as drag-and-drop,

much more readily than traditional applications. SPAs can be designed to run in a disconnected mode,

making updates to a client-side model that are eventually synchronized back to the server once a

connection is re-established. You should choose a SPA style application if your app’s requirements

include rich functionality that goes beyond what typical HTML forms offer.

Note that frequently SPAs need to implement features that are built-in to traditional web apps, such

as displaying a meaningful URL in the address bar reflecting the current operation (and allowing users

to bookmark or deep link to this URL to return to it). SPAs also should allow users to use the browser’s

back and forward buttons with results that won’t surprise them.

Your team is familiar with JavaScript and/or TypeScript development

Writing SPAs requires familiarity with JavaScript and/or TypeScript and client-side programming

techniques and libraries. Your team should be competent in writing modern JavaScript using a SPA

framework like Angular.

References – SPA Frameworks

AngularJS

https://angularjs.org/

Comparison of 4 Popular JavaScript Frameworks

https://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks

Your application must already expose an API for other (internal or public) clients

If you’re already supporting a web API for use by other clients, it may require less effort to create a

SPA implementation that leverages these APIs rather than reproducing the logic in server-side form.

SPAs make extensive use of web APIs to query and update data as users interact with the application.

https://angularjs.org/
https://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks

10 Chapter 3

Choosing Between Traditional Web Apps and SPAs

Decision table – Traditional Web or SPA

The following decision table summarizes some of the basic factors to consider when choosing

between a traditional web application and a SPA.

Factor Traditional Web App Single Page Application

Required Team Familiarity with

JavaScript/TypeScript

Minimal Required

Support Browsers without

Scripting

Supported Not Supported

Minimal Client-Side

Application Behavior

Well-Suited Overkill

Rich, Complex User Interface

Requirements

Limited Well-Suited

CHAPTER 4

11 Chapter 4

Architectural Principles

Architectural
Principles

“If builders built buildings the way programmers wrote programs, then the first

woodpecker that came along would destroy civilization.”

Gerald Weinberg

Summary

You should architect and design software solutions with maintainability in mind. The principles

outlined in this section can help guide you toward architectural decisions that will result in clean,

maintainable applications. Generally, these principles will guide you toward building applications out

of discrete components that are not tightly coupled to other parts of your application, but rather

communicate through explicit interfaces or messaging systems.

Common design principles

Separation of Concerns

A guiding principle when developing is Separation of Concerns. This principle asserts that software

should be separated based on the kinds of work it performs. For instance, consider an application that

includes logic for identifying noteworthy items to display to the user, and which formats such items in

a particular way to make them more noticeable. The behavior responsible for choosing which items to

format should be kept separate from the behavior responsible for formatting the items, since these

are separate concerns that are only coincidentally related to one another.

Architecturally, applications can be logically built to follow this principle by separating core business

behavior from infrastructure and user interface logic. Ideally, business rules and logic should reside in

a separate project, which should not depend on other projects in the application. This helps ensure

that the business model is easy to test and can evolve without being tightly coupled to low-level

implementation details. Separation of concerns is a key consideration behind the use of layers in

application architectures.

12 Chapter 4

Architectural Principles

Encapsulation

Different parts of an application should use encapsulation to insulate them from other parts of the

application. Application components and layers should be able to adjust their internal implementation

without breaking their collaborators as long as external contracts are not violated. Proper use of

encapsulation helps achieve loose coupling and modularity in application designs, since objects and

packages can be replaced with alternative implementations so long as the same interface is

maintained.

In classes, encapsulation is achieved by limiting outside access to the class’s internal state. If an

outside actor wants to manipulate the state of the object, it should do so through a well-defined

function (or property setter), rather than having direct access to the private state of the object.

Likewise, application components and applications themselves should expose well-defined interfaces

for their collaborators to use, rather than allowing their state to be modified directly. This frees the

application’s internal design to evolve over time without worrying that doing so will break

collaborators, so long as the public contracts are maintained.

Dependency Inversion

The direction of dependency within the application should be in the direction of abstraction, not

implementation details. Most applications are written such that compile-time dependency flows in the

direction of runtime execution. That is, if module A calls a function in module B, which calls a function

in module C, then at compile time A will depend on B which will depend on C. Applying the

dependency inversion principle allows A to call methods on an abstraction that B implements, making

it possible for A to call B at runtime, but for B to depend on A at compile time (thus, inverting the

typical compile-time dependency).

TODO: Insert two figures demonstrating the above dependency relationships.

Dependency inversion is a key part of building loosely-coupled applications, since implementation

details can be written to depend on and implement higher level abstractions, rather than the other

way around. The resulting applications are more testable, modular, and maintainable as a result. The

practice of dependency injection is made possible by following the dependency inversion principle.

Explicit Dependencies

Methods and classes should explicitly require any collaborating objects they need in order to

function correctly. Class constructors provide an opportunity for classes to identify the things they

need in order to be in a valid state and to function properly. If you define classes that can be

constructed and called, but which will only function properly if certain global or infrastructure

components are in place, these classes are being dishonest with their clients. The constructor contract

is telling the client that it only needs the things specified (possibly nothing if the class is just using a

default constructor), but then at runtime it turns out the object really did need something else.

By following the explicit dependencies principle, your classes and methods are being honest with their

clients about what they need in order to function. This makes your code more self-documenting and

your coding contracts more user-friendly, since users will come to trust that as long as they provide

what’s required in the form of method or constructor parameters, the objects they’re working with will

behave correctly at runtime.

13 Chapter 4

Architectural Principles

Single Responsibility

The single responsibility principle applies to object-oriented design, but can also be considered as an

architectural principle similar to separation of concerns. It states that objects should have only one

responsibility and that they should have only one reason to change. Specifically, the only situation in

which the object should change is if the manner in which it performs its one responsibility must be

updated. Following this principle helps to produce more loosely-coupled and modular systems, since

many kinds of new behavior can be implemented as new classes, rather than by adding additional

responsibility to existing classes. Adding new classes is always safer than changing existing classes,

since no code yet depends on the new classes.

In a monolithic application, we can apply the single responsibility principle at a high level to the layers

in the application. Presentation responsibility should remain in the UI project, while data access

responsibility should be kept within an infrastructure project. Business logic should be kept in the

application core project, where it can be easily tested and can evolve independently from other

responsibilities.

When this principle is applied to application architecture, and taken to its logical endpoint, you get

microservices. A given microservice should have a single responsibility. If you need to extend the

behavior of a system, it’s usually better to do it by adding additional microservices, rather than by

adding responsibility to an existing one.

Learn more about microservices architecture

Don’t Repeat Yourself (DRY)

The application should avoid specifying behavior related to a particular concept in multiple places as

this is a frequent source of errors. At some point, a change in requirements will require changing this

behavior and the likelihood that at least one instance of the behavior will fail to be updated will result

in inconsistent behavior of the system.

Rather than duplicating logic, encapsulate it in a programming construct. Make this construct the

single authority over this behavior, and have any other part of the application that requires this

behavior use the new construct.

Note: Avoid binding together behavior that is only coincidentally repetitive. For example, just because

two different constants both have the same value, that doesn’t mean you should have only one

constant, if conceptually they’re referring to different things.

http://aka.ms/MicroservicesEbook

14 Chapter 4

Architectural Principles

Persistence Ignorance

Persistence ignorance (PI) refers to types that need to be persisted, but whose code is unaffected by

the choice of persistence technology. Such types in .NET are sometimes referred to as Plain Old CLR

Objects (POCOs), because they do not need to inherit from a particular base class or implement a

particular interface. Persistence ignorance is valuable because it allows the same business model to be

persisted in multiple ways, offering additional flexibility to the application. Persistence choices might

change over time, from one database technology to another, or additional forms of persistence might

be required in addition to whatever the application started with (e.g. using a Redis cache or Azure

DocumentDb in addition to a relational database).

Bounded Contexts

Bounded contexts are a central pattern in Domain-Driven Design. They provide a way of tackling

complexity in large applications or organizations by breaking it up into separate conceptual modules.

Each conceptual module then represents a context which is separated from other contexts (hence,

bounded), and can evolve independently. Each bounded context should ideally be free to choose its

own names for concepts within it, and should have exclusive access to its own persistence store.

At a minimum, individual web applications should strive to be their own bounded context, with their

own persistence store for their business model, rather than sharing a database with other applications.

Communication between bounded contexts occurs through programmatic interfaces, rather than

through a shared database, which allows for business logic and events to take place in response to

changes that take place. Bounded contexts map closely to microservices, which also are ideally

implemented as their own individual bounded contexts.

References – Modern Web Applications

Separation of Concerns

http://deviq.com/separation-of-concerns/

Encapsulation

http://deviq.com/encapsulation/

Dependency Inversion Principle

http://deviq.com/dependency-inversion-principle/

Explicit Dependencies Principle

http://deviq.com/explicit-dependencies-principle/

Don’t Repeat Yourself

http://deviq.com/don-t-repeat-yourself/

Persistence Ignorance

http://deviq.com/persistence-ignorance/

Bounded Context

https://martinfowler.com/bliki/BoundedContext.html

Domain-Driven Design Fundamentals

http://bit.ly/PS-DDD

http://deviq.com/separation-of-concerns/
http://deviq.com/encapsulation/
http://deviq.com/dependency-inversion-principle/
http://deviq.com/explicit-dependencies-principle/
http://deviq.com/don-t-repeat-yourself/
http://deviq.com/persistence-ignorance/
https://martinfowler.com/bliki/BoundedContext.html
http://bit.ly/PS-DDD

15 Chapter 5

Common Web Application Architectures

S E C T I O N

5

Common Web
Application
Architectures

“If you think good architecture is expensive, try bad architecture.”

Brian Foote and Joseph Yoder

Summary

Most traditional .NET applications are deployed as single units corresponding to an executable or a

single web application running within a single IIS appdomain. This is the simplest deployment model

and serves many internal and smaller public applications very well. However, even given this single

unit of deployment, most non-trivial business applications benefit from some logical separation into

several layers.

What is a monolithic application?

A monolithic application is one that is entirely self-contained, in terms of its behavior. It may interact

with other services or data stores in the course of performing its operations, but the core of its

behavior runs within its own process and the entire application is typically deployed as a single unit. If

such an application needs to scale horizontally, typically the entire application is duplicated across

multiple servers or virtual machines.

All-in-One applications

The smallest possible number of projects for an application architecture is one. In this architecture, the

entire logic of the application is contained in a single project, compiled to a single assembly, and

deployed as a single unit.

A new ASP.NET Core project, whether created in Visual Studio or from the command line, starts out as

a simple “all-in-one” monolith. It contains all of the behavior of the application, including

presentation, business, and data access logic. Figure 5-1 shows the file structure of a single-project

app.

16 Chapter 5

Common Web Application Architectures

Figure 5-1. A single project ASP.NET Core app

In a single project scenario, separation of concerns is achieved through the use of folders. The default

template includes separate folders for MVC pattern responsibilities of Models, Views, and Controllers,

as well as additional folders for Data and Services. In this arrangement, presentation details should be

limited as much as possible to the Views folder, and data access implementation details should be

limited to classes kept in the Data folder. Business logic should reside in services and classes within

the Models folder.

Although simple, the single-project monolithic solution has some disadvantages. As the project’s size

and complexity grows, the number of files and folders will continue to grow as well. UI concerns

(models, views, controllers) reside in multiple folders, which are not grouped together alphabetically.

This issue only gets worse when additional UI-level constructs, such as Filters or ModelBinders, are

added in their own folders. Business logic is scattered between the Models and Services folders, and

there is no clear indication of which classes in which folders should depend on which others. This lack

of organization at the project level frequently leads to spaghetti code.

In order to address these issues, applications often evolve into multi-project solutions, where each

project is considered to reside in a particular layer of the application.

What are layers?

As applications grow in complexity, one way to manage that complexity is to break the application up

according to its responsibilities or concerns. This follows the separation of concerns principle, and can

help keep a growing codebase organized so that developers can easily find where certain functionality

is implemented. Layered architecture offers a number of advantages beyond just code organization,

though.

http://deviq.com/spaghetti-code/

17 Chapter 5

Common Web Application Architectures

By organizing code into layers, common low-level functionality can be reused throughout the

application. This reuse is beneficial because it means less code needs to be written and because it can

allow the application to standardize on a single implementation, following the DRY principle.

With a layered architecture, applications can enforce restrictions on which layers can communicate

with other layers. This helps to achieve encapsulation. When a layer is changed or replaced, only those

layers that work with it should be impacted. By limiting which layers depend on which other layers, the

impact of changes can be mitigated so that a single change doesn’t impact the entire application.

Layers (and encapsulation) make it much easier to replace functionality within the application. For

example, an application might initially use its own SQL Server database for persistence, but later could

choose to use a cloud-based persistence strategy, or one behind a web API. If the application has

properly encapsulated its persistence implementation within a logical layer, that SQL Server specific

layer could be replaced by a new one implementing the same public interface.

In addition to the potential of swapping out implementations in response to future changes in

requirements, application layers can also make it easier to swap out implementations for testing

purposes. Instead of having to write tests that operate against the real data layer or UI layer of the

application, these layers can be replaced at test time with fake implementations that provide known

responses to requests. This typically makes tests much easier to write and much faster to run when

compared to running tests again the application’s real infrastructure.

Logical layering is a common technique for improving the organization of code in enterprise software

applications, and there are several ways in which code can be organized into layers.

Note: Layers represent logical separation within the application. In the event that application logic is

physically distributed to separate servers or processes, these separate physical deployment targets are

referred to as tiers. It’s possible, and quite common, to have an N-Layer application that is deployed

to a single tier.

18 Chapter 5

Common Web Application Architectures

Traditional “N-Layer” architecture applications

The most common organization of application logic into layers it shown in Figure 5-2.

Figure 5-2. Typical application layers.

These layers are frequently abbreviated as UI, BLL (Business Logic Layer), and DAL (Data Access Layer).

Using this architecture, users make requests through the UI layer, which interacts only with the BLL.

The BLL, in turn, can call the DAL for data access requests. The UI layer should not make any requests

to the DAL directly, nor should it interact with persistence directly through other means. Likewise, the

BLL should only interact with persistence by going through the DAL. In this way, each layer has its own

well-known responsibility.

One disadvantage of this traditional layering approach is that compile-time dependencies run from

the top to the bottom. That is, the UI layer depends on the BLL, which depends on the DAL. This

means that the BLL, which usually holds the most important logic in the application, is dependent on

data access implementation details (and often on the existence of a database). Testing business logic

in such an architecture is often difficult, requiring a test database. The dependency inversion principle

can be used to address this issue, as you’ll see in the next section.

19 Chapter 5

Common Web Application Architectures

Figure 5-3 shows an example solution, breaking the application into three projects by responsibility

(or layer).

Figure 5-3. A simple monolithic application with three projects.

Although this application uses several projects for organizational purposes, it is still deployed as a

single unit and its clients will interact with it as a single web app. This allows for very simple

deployment process. Figure 5-4 shows how such an app might be hosted using Windows Azure.

20 Chapter 5

Common Web Application Architectures

Figure 5-4. TODO

Internally, this project’s organization into multiple projects based on responsibility improves the

maintainability of the application.

This unit can be scaled up or out to take advantage of cloud-based on-demand scalability. Scaling up

means adding additional CPU, memory, disk space, or other resources to the server(s) hosting your

app. Scaling out means adding additional instances of such servers, whether these are physical servers

or virtual machines. When your app is hosted across multiple instances, a load balancer is used to

assign requests to individual app instances.

TODO: Show an example of how to use Azure to scale an application deployed as a Web App.

21 Chapter 5

Common Web Application Architectures

Clean architecture

Applications that follow the Dependency Inversion Principle as well as Domain-Driven Design (DDD)

principles tend to arrive at a similar architecture. This architecture has gone by many names over the

years. One of the first names was Hexagonal Architecture, followed by Ports-and-Adapters. More

recently, it’s been cited as the Onion Architecture or Clean Architecture. It is this last name, Clean

Architecture, that we are using as the basis for describing the architecture in this eBook.

Note: The term Clean Architecture can be applied to applications that are built using DDD Principles

as well as to those that are not built using DDD. In the case of the former, this combination may be

referred to as “Clean DDD”.

Clean architecture puts the business logic and application model at the center of the application.

Instead of having business logic depend on data access or other infrastructure concerns, this

dependency is inverted: infrastructure and implementation details depend on the Application Core.

This is achieved by defining abstractions, or interfaces, in the Application Core, which are then

implemented by types defined in the Infrastructure layer. A common way of visualizing this

architecture is to use a series of concentric circles, similar to an onion. Figure 5-X shows an example of

this style of architectural representation.

Figure 5-X. Clean Architecture; onion view

TODO: Insert circular “onion” architecture diagram.

In this diagram, dependencies flow toward the center. Thus, you can see that the Application Core

(which takes its name from its position at the core of this diagram) has no dependencies on other

application layers. This view still doesn’t offer a perfect visualization, though, since it implies that the

UI layer must call through the Infrastructure (or Tests) layer in order to reach the Core layer. Figure 5-X

shows a more traditional horizontal layer diagram that better reflects the dependency between the UI

and other layers.

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

22 Chapter 5

Common Web Application Architectures

Figure 5-X. Clean Architecture; horizontal layer view

Note that the solid arrows represent compile-time dependencies, while the dashed arrow represents a

runtime-only dependency. Using the clean architecture, the UI layer works with interfaces defined in

the Application Core at compile time, and ideally should not have any knowledge of the

implementation types defined in the Infrastructure layer. At runtime, however, these implementation

types will be required for the app to execute, so they will need to be present and wired up to the

Application Core interfaces via dependency injection.

Because the Application Core doesn’t depend on Infrastructure, it is very easy to write automated unit

tests for this layer. Since the UI layer doesn’t have any direct dependency on types defined in the

Infrastructure project, it is likewise very easy to swap out implementations, either to facilitate testing

or in response to changing application requirements. ASP.NET Core’s built-in use of and support for

dependency injection makes this architecture the most appropriate way to structure non-trivial

monolithic applications.

Organizing Code in Clean Architecture

In a Clean Architecture solution, each project has clear responsibilities. As such, certain types will

belong in each project and you’ll frequently find folders corresponding to these types in the

appropriate project.

The Application Core holds the business model, which includes entities, services, and interfaces. These

interfaces include abstractions for operations that will be performed using Infrastructure, such as data

access, file system access, network calls, etc. Sometimes services or interfaces defined at this layer will

need to work with non-entity types that have no dependencies on UI or Infrastructure. These can be

defined as simple Data Transfer Objects (DTOs).

23 Chapter 5

Common Web Application Architectures

Application Core Types

• Entities (business model classes that are persisted)

• Interfaces

• Services

• DTOs

The Infrastructure project will typically include data access implementations. In a typical ASP.NET Core

web application, this will include the Entity Framework DbContext, any EF Core Migrations that have

been defined, and data access implementation classes. The most common way to abstract data access

implementation code is through the use of the Repository design pattern.

In addition to data access implementations, the Infrastructure project should contain implementations

of services that must interact with infrastructure concerns. These services should implement interfaces

defined in the Application Core, and so Infrastructure should have a reference to the Application Core

project.

Infrastructure Types

• EF Core types (DbContext, Migrations)

• Data access implementation types (Repositories)

• Infrastructure-specific services (FileLogger, SmtpNotifier, etc.)

The user interface layer in an ASP.NET Core MVC application will be the entry point for the

application, and will be an ASP.NET Core MVC project. This project should reference the Application

Core project, and its types should interact with infrastructure strictly through interfaces defined in

Application Core. No direct instantiation of (or static calls to) Infrastructure layer types should be

permitted in the UI layer.

UI Layer Types

• Controllers

• Filters

• Views

• ViewModels

• Startup

The Startup class is responsible for configuring the application, and for wiring up implementation

types to interfaces, allowing dependency injection to work properly at run time.

Note: In order to wire up dependency injection in ConfigureServices in the Startup.cs file of the UI

project, the project may need to reference the Infrastructure project. This dependency can be

eliminated, most easily by using a custom DI container. For the purposes of this sample, the simplest

approach is to allow the UI project to reference the Infrastructure project.

http://deviq.com/repository-pattern/

24 Chapter 5

Common Web Application Architectures

Monolithic Applications and Containers

You can build a single and monolithic-deployment based Web Application or Service and deploy it as

a container. Within the application, it might not be monolithic but organized into several libraries,

components or layers. Externally it is a single container like a single process, single web application or

single service.

To manage this model, you deploy a single container to represent the application. To scale, just add

additional copies with a load balancer in front. The simplicity comes from managing a single

deployment in a single container or VM.

You can include multiple components/libraries or internal layers within each container, as illustrated in

Figure 5-X. But, following the container principal of “a container does one thing, and does it in one

process”, the monolithic pattern might be a conflict.

The downside of this approach comes if/when the application grows, requiring it to scale. If the entire

application scaled, it’s not really a problem. However, in most cases, a few parts of the application are

the choke points requiring scaling, while other components are used less.

Using the typical eCommerce example; what you likely need to scale is the product information

component. Many more customers browse products than purchase them. More customers use their

basket than use the payment pipeline. Fewer customers add comments or view their purchase history.

And you likely only have a handful of employees, in a single region, that need to manage the content

and marketing campaigns. By scaling the monolithic design, all the code is deployed multiple times.

Figure 5-X. Monolithic application architecture example

25 Chapter 5

Common Web Application Architectures

In addition to the scale everything problem, changes to a single component require complete

retesting of the entire application, and a complete redeployment of all the instances.

The monolithic approach is common, and many organizations are developing with this architectural

approach. Many are having good enough results, while others are hitting limits. Many designed their

applications in this model, because the tools and infrastructure were too difficult to build service

oriented architectures (SOA), and they didn’t see the need - until the app grew. If you find you’re

hitting the limits of the monolithic approach, breaking the app up to enable it to better leverage

containers and microservices may be the next logical step.

Deploying monolithic applications in Microsoft Azure can be achieved using dedicated VMs for each

instance. Using Azure VM Scale Sets, you can easily scale the VMs. Azure App Services can run

monolithic applications and easily scale instances without having to manage the VMs. Azure App

Services can run single instances of Docker containers as well, simplifying the deployment. Using

Docker, you can deploy a single VM as a Docker host, and run multiple instances. Using the Azure

balancer, as shown in the Figure 5-X, you can manage scaling.

The deployment to the various hosts can be managed with traditional deployment techniques. The

Docker hosts can be managed with commands like docker run performed manually, or through

automation such as Continuous Delivery (CD) pipelines.

Monolithic application deployed as a container

There are benefits of using containers to manage monolithic application deployments. Scaling the

instances of containers is far faster and easier than deploying additional VMs. Even when using VM

Scale Sets to scale VMs, they take time to instance. When deployed as app instances, the

configuration of the app is managed as part of the VM.

Deploying updates as Docker images is far faster and network efficient. Docker Images typically start

in seconds, speeding rollouts. Tearing down a Docker instance is as easy as issuing a docker stop

command, typically completing in less than a second.

Figure 5-X. Multiple hosts scaling-out a single Docker application

apps/containers

https://azure.microsoft.com/en-us/documentation/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/services/app-service/

26 Chapter 5

Common Web Application Architectures

As containers are inherently immutable by design, you never need to worry about corrupted VMs,

whereas update scripts might forget to account for some specific configuration or file left on disk.

While monolithic apps can benefit from Docker, breaking up the monolithic application into sub

systems which can be scaled, developed and deployed individually may be your entry point into the

realm of microservices.

References – Common Web Architectures

Creating N-Tier Applications in C#

https://www.pluralsight.com/courses/n-tier-apps-part1

The Clean Architecture

https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

The Onion Architecture

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

The Repository Pattern

http://deviq.com/repository-pattern/

Architecting Microservices eBook

http://aka.ms/MicroservicesEbook

https://www.pluralsight.com/courses/n-tier-apps-part1
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://deviq.com/repository-pattern/
http://aka.ms/MicroservicesEbook

27 Chapter 6

 Common Client Side Web Technologies

S E C T I O N

6

 Common Client
Side Web
Technologies

“Websites should look good from the inside and out.”

Paul Cookson

Summary

ASP.NET Core applications are web applications and they typically rely on client-side web

technologies like HTML, CSS, and JavaScript. By separating the content of the page (the HTML) from

its layout and styling (the CSS), and its behavior (via JavaScript), complex web apps can leverage the

Separation of Concerns principle. Future changes to the structure, design, or behavior of the

application can be made more easily when these concerns are not intertwined.

While HTML and CSS are relatively stable, JavaScript, by means of the application frameworks and

utilities developers work with to build web-based applications, is evolving at breakneck speed. This

chapter looks at a few ways JavaScript is used by web developers as part of developing applications,

as provides a high-level overview of the Angular and React client side libraries.

HTML

HTML (HyperText Markup Language) is the standard markup language used to create web pages and

web applications. Its elements form the building blocks of pages, representing formatted text, images,

form inputs, and other structures. When a browser makes a request to a URL, whether fetching a page

or an application, the first thing that is returned is an HTML document. This HTML document may

reference or include additional information about its look and layout in the form of CSS, or behavior

in the form of JavaScript.

28 Chapter 6

 Common Client Side Web Technologies

CSS

CSS (Cascading Style Sheets) is used to control the look and layout of HTML elements. CSS styles can

be applied directly to an HTML element, defined separately on the same page, or defined in a

separate file and referenced by the page. Styles cascade based on how they are used to select a given

HTML element. For instance, a style might apply to an entire document, but would be overridden by a

style that applied to a particular element. Likewise, an element-specific style would be overridden by a

style that applied to a CSS class that was applied to the element, which in turn would be overridden

by a style targeting a specific instance of that element (via its id). Figure 7-X

Figure 7-X. CSS Specificity rules, in order.

It’s best to keep styles in their own separate stylesheet files, and to use selection-based cascading to

implement consistent and reusable styles within the application. Placing style rules within HTML

should be avoided, and applying styles to specific individual elements (rather than whole classes of

elements, or elements that have had a particular CSS class applied to them) should be the exception,

not the rule.

CSS Preprocessors

CSS stylesheets lack support for conditional logic, variables, and other programming language

features. Thus, large stylesheets often include a lot of repetition, as the same color, font, or other

setting is applied to many different variations of HTML elements and CSS classes. CSS preprocessors

can help your stylesheets follow the DRY principle by adding support for variables and logic.

The most popular CSS preprocessors are Sass and LESS. Both extend CSS and are backward

compatible with it, meaning that a plain CSS file is a valid Sass or LESS file. Sass is Ruby-based and

LESS is JavaScript based, and both typically run as part of your local development process. Both have

command line tools available, as well as built-in support in Visual Studio for running them using Gulp

or Grunt tasks.

http://deviq.com/don-t-repeat-yourself/

29 Chapter 6

 Common Client Side Web Technologies

JavaScript

JavaScript is a dynamic, interpreted programming language that has been standardized in the

ECMAScript language specification. It is the programming language of the web. Like CSS, JavaScript

can be defined as attributes within HTML elements, as blocks of script within a page, or in separate

files. Just like CSS, it’s generally recommended to organize JavaScript into separate files, keeping it

separated as much as possible from the HTML found on individual web pages or application views.

When working with JavaScript in your web application, there are a few tasks that you’ll commonly

need to perform:

• Selecting an HTML element and retrieving and/or updating its value

• Querying a Web API for data

• Sending a command to a Web API (and responding to a callback with its result)

• Performing validation

You can perform all of these tasks with JavaScript alone, but many libraries exist to make these tasks

easier. One of the first and most successful of these libraries is jQuery, which continues to be a

popular choice for simplifying these tasks on web pages. For Single Page Applications (SPAs), jQuery

doesn’t provide many of the desired features that Angular and React offer.

Legacy Web Apps with jQuery

Although ancient by JavaScript framework standards, jQuery continues to be a very commonly used

library for working with HTML/CSS and building applications that make AJAX calls to web APIs.

Show imperative code model vs. declarative with SPAs below (and support for routing, binding,

etc.)

jQuery vs a SPA Framework

Factor jQuery Angular

Abstracts the DOM Yes Yes

AJAX Support Yes Yes

Declarative Data Binding No Yes

MVC-style Routing No Yes

Templating No Yes

Deep-Link Routing No Yes

Most of the features jQuery lacks intrinsically can be added with the addition of other libraries.

However, a SPA framework like Angular provides these features in a more integrated fashion, since it’s

been designed with all of them in mind from the start. Also, jQuery is a very imperative library,

meaning that you need to call jQuery functions in order to do anything with jQuery. Much of the work

30 Chapter 6

 Common Client Side Web Technologies

and functionality that SPA frameworks provide can be done declaratively, requiring no actual code to

be written.

Data binding is a great example of this. In jQuery, it usually only takes one line of code to get the

value of a DOM element, or to set an element’s value. However, you have to write this code any time

you need to change the value of the element, and sometimes this will occur in multiple functions on a

page. Another common example is element visibility. In jQuery, there might be many different places

where you would write code to control whether certain elements were visible. In each of these cases,

when using data binding, no code would need to be written. You would simply bind the value or

visibility of the element(s) in question to a viewmodel on the page, and changes to that viewmodel

would automatically be reflected in the bound elements.

Angular SPAs

AngularJS quickly became one of the world’s most popular JavaScript frameworks. With Angular 2, the

team rebuilt the framework from the ground up (using TypeScript) and rebranded from AngularJS to

simply Angular. Currently on version 4, Angular continues to be a robust framework for building

Single Page Applications.

Angular applications are built from components. Components combine HTML templates with special

objects and control a portion of the page. A simple component from Angular’s docs is shown here:

import { Component } from '@angular/core';

@Component({

 selector: 'my-app',

 template: `<h1>Hello {{name}}</h1>`

})

export class AppComponent { name = 'Angular'; }

Components are defined using the @Component decorator function, which takes in metadata about

the component. The selector property identifies the id of the element on the page where this

component will be displayed. The template property is a simple HTML template that includes a

placeholder that corresponds to the component’s name property, defined on the last line.

By working with components and templates, instead of DOM elements, Angular apps can operate at a

higher level of abstraction and with less overall code than apps written using just JavaScript (also

called “vanilla JS”) or with jQuery. Angular also imposes some order on how you organize your client-

side script files. By convention, Angular apps use a common folder structure, with module and

component script files located in an app folder. Angular scripts concerned with building, deploying,

and testing the app are typically located in a higher-level folder.

Angular also makes great use of command line interface (CLI) tooling. Getting started with Angular

development locally (assuming you already have git and npm installed) consists of simply cloning a

https://www.typescriptlang.org/

31 Chapter 6

 Common Client Side Web Technologies

repo from GitHub and running `npm install` and `npm start`. Beyond this, Angular ships its own CLI

tool which can create projects, add files, and assist with testing, bundling, and deployment tasks. This

CLI tooling friendliness makes Angular especially compatible with ASP.NET Core, which also features

great CLI support.

Reference SPA sample in eShopOnContainers which uses Angular 2 and TypeScript.

Show a short summary of the structure of the application when using Angular 2.

https://github.com/dotnet/eShopOnContainers/tree/master/src/Web/WebSPA

React

Unlike Angular, which offers a full Model-View-Controller pattern implementation, React is only

concerned with views. It’s not a framework, just a library, so to build a SPA you’ll need to leverage

additional libraries.

One of React’s most important features is its use of a virtual DOM. The virtual DOM provides React

with several advantages, including performance (the virtual DOM can optimize which parts of the

actual DOM need to be updated) and testability (no need to have a browser to test React and its

interactions with its virtual DOM).

React is also unusual in how it works with HTML. Rather than having a strict separation between code

and markup (with references to JavaScript appearing in HTML attributes perhaps), React adds HTML

directly within its JavaScript code as JSX. JSX is HTML-like syntax that can compile down to pure

JavaScript. For example:

 { authors.map(author =>

 <li key={author.id}>{author.name}

)}

If you already know JavaScript, learning React should be easy. There isn’t nearly as much learning

curve or special syntax involved as with Angular or other popular libraries.

Because React isn’t a full framework, you’ll typically want other libraries to handle things like routing,

web API calls, and dependency management. The nice thing is, you can pick the best library for each

of these, but the disadvantage is that you need to make all of these decisions and verify all of your

chosen libraries work well together when you’re done. If you want a good starting point, you can use

a starter kit like React Slingshot, which prepackages a set of compatible libraries together with React.

Choosing a SPA Framework

Show considerations and a decision table with jQuery, Angular, and React as options.

https://github.com/dotnet/eShopOnContainers/tree/master/src/Web/WebSPA

32 Chapter 6

 Common Client Side Web Technologies

References – Client Web Technologies

HTML and CSS

https://www.w3.org/standards/webdesign/htmlcss

Sass vs. LESS

https://www.keycdn.com/blog/sass-vs-less/

Styling ASP.NET Core Apps with LESS, Sass, and Font Awesome

https://docs.microsoft.com/en-us/aspnet/core/client-side/less-sass-fa

Client-Side Development in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/client-side/

jQuery

https://jquery.com/

jQuery vs AngularJS

https://www.airpair.com/angularjs/posts/jquery-angularjs-comparison-migration-walkthrough

Angular

https://angular.io/

React

https://facebook.github.io/react/

React Slingshot

https://github.com/coryhouse/react-slingshot

React vs Angular 2 Comparison

https://www.codementor.io/codementorteam/react-vs-angular-2-comparison-beginners-guide-lvz5710ha

5 Best JavaScript Frameworks of 2017

https://hackernoon.com/5-best-javascript-frameworks-in-2017-7a63b3870282

https://www.w3.org/standards/webdesign/htmlcss
https://docs.microsoft.com/en-us/aspnet/core/client-side/less-sass-fa
https://docs.microsoft.com/en-us/aspnet/core/client-side/
https://facebook.github.io/react/
https://github.com/coryhouse/react-slingshot
https://www.codementor.io/codementorteam/react-vs-angular-2-comparison-beginners-guide-lvz5710ha

33 Chapter 7

 Developing ASP.NET Core MVC Apps

S E C T I O N

7

 Developing
ASP.NET Core
MVC Apps

“It’s not important to get it right the first time. It’s vitally important to get it right the

last time.”

Andrew Hunt and David Thomas

Summary

ASP.NET Core is a cross-platform, open-source framework for building modern cloud-optimized web

applications. ASP.NET Core apps are lightweight and modular, with built-in support for dependency

injection, enabling in greater testability and maintainability. Combined with MVC, which supports

building modern web APIs in addition to view-based apps, ASP.NET Core is a powerful framework

with which to build enterprise web applications.

Mapping Requests to Responses

At its heart, ASP.NET Core apps map incoming requests to outgoing responses. At a low level, this is

done with middleware, and simple ASP.NET Core apps and microservices may be comprised solely of

custom middleware. When using ASP.NET Core MVC, you can work at a somewhat higher level,

thinking in terms of routes, controllers, and actions. Each incoming request is compared with the

application’s routing table, and if a matching route is found, the associated action method (belonging

to a controller) is called to handle the request. If no matching route is found, an error handler (in this

case, returning a NotFound result) is called.

34 Chapter 7

 Developing ASP.NET Core MVC Apps

ASP.NET Core MVC apps can use conventional routes, attribute routes, or both. Conventional routes

are defined in code, specifying routing conventions using syntax like in the example below:

app.UseMvc(routes =>

{

routes.MapRoute("default","{controller=Home}/{action=Index}/{id?}");

});

In this example, a route named “default” has been added to the routing table. It defines a route

template with placeholders for controller, action, and id. The controller and action placeholders have

default specified (“Home” and “Index”, respectively), and the id placeholder is optional (by virtue of a

“?” applied to it). The convention defined here states that the first part of a request should correspond

to the name of the controller, the second part to the action, and then if necessary a third part will

represent an id parameter. Conventional routes are typically defined in one place for the application,

such as in the Configure method in the Startup class.

Attribute routes are applied to controllers and actions directly, rather than specified globally. This has

the advantage of making them much more discoverable when you’re looking at a particular method,

but does mean that routing information is not kept in one place in the application. With attribute

routes, you can easily specify multiple routes for a given action, as well as combine routes between

controllers and actions. For example:

[Route("Home")]

public class HomeController : Controller

{

[Route("")] // Combines to define the route template "Home"

[Route("Index")] // Combines to define route template "Home/Index"

[Route("/")] // Does not combine, defines the route template ""

public IActionResult Index() {}

35 Chapter 7

 Developing ASP.NET Core MVC Apps

Routes can be specified on [HttpGet] and similar attributes, avoiding the need to add separate

[Route] attributes. Attribute routes can also use tokens to reduce the need to repeat controller or

action names, as shown below:

[Route("[controller]")]

public class ProductsController : Controller

{

 [Route("")] // Matches 'Products'

 [Route("Index")] // Matches 'Products/Index'

 public IActionResult Index()

}

Once a given request has been matched to a route, but before the action method is called, ASP.NET

Core MVC will perform model binding and model validation on the request. Model binding is

responsible for converting incoming HTTP data into the .NET types specified as parameters of the

action method to be called. For example, if the action method expects an int id parameter, model

binding will attempt to provide this parameter from a value provided as part of the request. To do so,

model binding looks for values in a posted form, values in the route itself, and query string values.

Assuming an id value is found, it will be converted to an integer before being passed into the action

method.

After binding the model but before calling the action method, model validation occurs. Model

validation uses optional attributes on the model type, and can help ensure that the provided model

object conforms to certain data requirements. Certain values may be specified as required, or limited

to a certain length or numeric range, etc. If validation attributes are specified but the model does not

conform to their requirements, the property ModelState.IsValid will be false, and the set of

failing validation rules will be available to send to the client making the request.

If you are using model validation, you should be sure to always check that the model is valid before

performing any state-altering commands, to ensure your app is not corrupted by invalid data. You can

use a filter to avoid the need to add code for this in every action. ASP.NET Core MVC filters offer a

way of intercepting groups of requests, so that common policies and cross-cutting concerns can be

applied on a targeted basis. Filters can be applied to individual actions, whole controllers, or globally

for an application.

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

36 Chapter 7

 Developing ASP.NET Core MVC Apps

For web APIs, ASP.NET Core MVC supports content negotiation, allowing requests to specify how

responses should be formatted. Based on headers provided in the request, actions returning data will

format the response in XML, JSON, or another supported format. This feature enables the same API to

be used by multiple clients with different data format requirements.

References – Mapping Requests to Responses

Routing to Controller Actions

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing

Model Binding

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding

Model Validation

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation

Filters

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

Working with Dependencies

ASP.NET Core has built-in support for and internally makes use of a technique known as dependency

injection. Dependency injection is a technique that enabled loose coupling between different parts of

an application. Looser coupling is desirable because it makes it easier to isolate parts of the

application, allowing for testing or replacement. It also makes it less likely that a change in one part of

the application will have an unexpected impact somewhere else in the application. Dependency

injection is based on the dependency inversion principle, and is often key to achieving the

open/closed principle. When evaluating how your application works with its dependencies, beware of

the static cling code smell, and remember the aphorism “new is glue.”

Static cling occurs when your classes make calls to static methods, or access static properties, which

have side effects or dependencies on infrastructure. For example, if you have a method that calls a

static method, which in turn writes to a database, your method is tightly coupled to the database.

Anything that breaks that database call will break your method. Testing such methods is notoriously

difficult, since such tests either require commercial mocking libraries to mock the static calls, or can

only be tested with a test database in place. Static calls that don’t have any dependence on

infrastructure, especially those that are completely stateless, are fine to call and have no impact on

coupling or testability (beyond coupling code to the static call itself).

Many developers understand the risks of static cling and global state, but will still tightly couple their

code to specific implementations through direct instantiation. “New is glue” is meant to be a reminder

of this coupling, and not a general condemnation of the use of the new keyword. Just as with static

method calls, new instances of types that have no external dependencies typically do not tightly

couple code to implementation details or make testing more difficult. But each time a class is

instantiated, take just a brief moment to consider whether it makes sense to hard-code that specific

instance in that particular location, or if it would be a better design to request that instance as a

dependency.

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/formatting
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
http://deviq.com/static-cling/
http://ardalis.com/new-is-glue

37 Chapter 7

 Developing ASP.NET Core MVC Apps

Declare Your Dependencies

ASP.NET Core is built around having methods and classes declare their dependencies, requesting

them as arguments. ASP.NET applications are typically set up in a Startup class, which itself is

configured to support dependency injection at several points. If your Startup class has a constructor, it

can request dependencies through the constructor, like so:

public class Startup

{

 public Startup(IHostingEnvironment env)

 {

 var builder = new ConfigurationBuilder()

 .SetBasePath(env.ContentRootPath)

 .AddJsonFile("appsettings.json", optional: false,

reloadOnChange: true)

 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",

optional: true);

 }

}

The Startup class is interesting in that there are no explicit type requirements for it. It doesn’t inherit

from a special Startup base class, nor does it implement any particular interface. You can give it a

constructor, or not, and you can specify as many parameters on the constructor as you want. When

the web host you’ve configured for your application starts, it will call the Startup class you’ve told it to

use, and will use dependency injection to populate any dependencies the Startup class requires. Of

course, if you request parameters that aren’t configured in the services container used by ASP.NET

Core, you’ll get an exception, but as long as you stick to dependencies the container knows about,

you can request anything you want.

38 Chapter 7

 Developing ASP.NET Core MVC Apps

Dependency injection is built into your ASP.NET Core apps right from the start, when you create the

Startup instance. It doesn’t stop there for the Startup class. You can also request dependencies in the

Configure method:

public void Configure(IApplicationBuilder app,

 IHostingEnvironment env,

 ILoggerFactory loggerFactory)

{

}

The ConfigureServices method is the exception to this behavior; it must take just one parameter

of type IServiceCollection. It doesn’t really need to support dependency injection, since on the

one hand it is responsible for adding objects to the services container, and on the other it has access

to all currently configured services via the IServiceCollection parameter. Thus, you can work

with dependencies defined in the ASP.NET Core services collection in every part of the Startup class,

either by requesting the needed service as a parameter or by working with the

IServiceCollection in ConfigureServices.

Note: If you need to ensure certain services are available to your Startup class, you can configure

them using WebHostBuilder and its ConfigureServices method.

The Startup class is a model for how you should structure other parts of your ASP.NET Core

application, from Controllers to Middleware to Filters to your own Services. In each case, you should

follow the Explicit Dependencies Principle, requesting your dependencies rather than directly creating

them, and leveraging dependency injection throughout your application. Be careful of where and how

you directly instantiate implementations, especially services and objects that work with infrastructure

or have side effects. Prefer working with abstractions defined in your application core and passed in as

arguments to hardcoding references to specific implementation types.

Structuring the Application

Monolithic applications typically have a single entry point. In the case of an ASP.NET Core web

application, the entry point will be the ASP.NET Core web project. However, that doesn’t mean the

solution should consist of just a single project. It’s useful to break up the application into different

layers in order to follow separation of concerns. Once broken up into layers, it’s helpful to go beyond

folders to separate projects, which can help achieve better encapsulation. The best approach to

achieve these goals with an ASP.NET Core application is a variation of the Clean Architecture

discussed in chapter 5. Following this approach, the application’s solution will be comprised of

separate libraries for the UI, Infrastructure, and ApplicationCore.

In addition to these projects, separate test projects are included as well (Testing is discussed in

Chapter 9).

The application’s object model and interfaces should be placed in the ApplicationCore project. This

project will have as few dependencies as possible, and the other projects in the solution will reference

http://deviq.com/explicit-dependencies-principle/

39 Chapter 7

 Developing ASP.NET Core MVC Apps

it. Business entities that need to be persisted are defined in the ApplicationCore project, as are

services that do not directly depend on infrastructure.

Implementation details, such as how persistence is performed or how notifications might be sent to a

user, are kept in the Infrastructure project. This project will reference implementation-specific

packages such as Entity Framework Core, but should not expose details about these implementations

outside of the project. Infrastructure services and repositories should implement interfaces that are

defined in the ApplicationCore project, and its persistence implementations are responsible for

retrieving and storing entities defined in ApplicationCore.

The ASP.NET Core project itself is responsible for any UI level concerns, but should not include

business logic or infrastructure details. In fact, ideally it shouldn’t even have a dependency on the

Infrastructure project, which will help ensure no dependency between the two projects is introduced

accidentally. This can be achieved using a third-party DI container like StructureMap, which allows you

to define DI rules in Registry classes in each project.

Another approach to decoupling the application from implementation details is to have the

application call microservices, perhaps deployed in individual Docker containers. This provides even

greater separation of concerns and decoupling than leveraging DI between two projects, but has

additional complexity.

Feature Organization

By default, ASP.NET Core applications organize their folder structure to include Controllers and Views,

and frequently ViewModels. Client-side code to support these server-side structures is typically stored

separately in the wwwroot folder. However, large applications may encounter problems with this

organization, since working on any given feature often requires jumping between these folders. This

gets more and more difficult as the number of files and subfolders in each folder grows, resulting in a

great deal of scrolling through Solution Explorer. One solution to this problem is to organize

application code by feature instead of by file type. This organizational style is typically referred to as

feature folders or feature slices (see also: Vertical Slices).

ASP.NET Core MVC supports Areas for this purpose. Using areas, you can create separate sets of

Controllers and Views folders (as well as any associated models) in each Area folder. Figure 7-X shows

an example folder structure, using Areas.

http://bit.ly/2abpJ7t

40 Chapter 7

 Developing ASP.NET Core MVC Apps

Figure 7-X Sample Area Organization

When using Areas, you must use attributes to decorate your controllers with the name of the area to

which they belong:

[Area(“Catalog”)]

public class HomeController

{}

You also need to add area support to your routes:

 app.UseMvc(routes =>

{

 // Areas support

 routes.MapRoute(

 name: "areaRoute",

 template:

"{area:exists}/{controller=Home}/{action=Index}/{id?}");

 routes.MapRoute(

41 Chapter 7

 Developing ASP.NET Core MVC Apps

 name: "default",

 template: "{controller=Home}/{action=Index}/{id?}");

});

In addition to the built-in support for Areas, you can also use your own folder structure, and

conventions in place of attributes and custom routes. This would allow you to have feature folders

that didn’t include separate folders for Views, Controllers, etc., keeping the hierarchy flatter and

making it easier to see all related files in a single place for each feature.

ASP.NET Core uses built-in convention types to control its behavior. You can modify or replace these

conventions. For example, you can create a convention that will automatically get the feature name

for a given controller based on its namespace (which typically correlates to the folder in which the

controller is located):

FeatureConvention : IControllerModelConvention

{

 public void Apply(ControllerModel controller)

 {

 controller.Properties.Add("feature",

 GetFeatureName(controller.ControllerType));

 }

 private string GetFeatureName(TypeInfo controllerType)

 {

 string[] tokens = controllerType.FullName.Split('.');

 if (!tokens.Any(t => t == "Features")) return "";

 string featureName = tokens

 .SkipWhile(t => !t.Equals("features",

 StringComparison.CurrentCultureIgnoreCase))

 .Skip(1)

 .Take(1)

42 Chapter 7

 Developing ASP.NET Core MVC Apps

 .FirstOrDefault();

 return featureName;

 }

}

You then specify this convention as an option when you add support for MVC to your application in

ConfigureServices:

services.AddMvc(o => o.Conventions.Add(new FeatureConvention()));

ASP.NET Core MVC also uses a convention to locate views. You can override it with a custom

convention so that views will be located in your feature folders (using the feature name provided by

the FeatureConvention, above). You can learn more about this approach and download a working

sample from the MSDN article, Feature Slices for ASP.NET Core MVC.

Cross-Cutting Concerns

As applications grow, it becomes increasingly important to factor out cross-cutting concerns to

eliminate duplication and maintain consistency. Some examples of cross-cutting concerns in ASP.NET

Core applications are authentication, model validation rules, output caching, and error handling,

though there are many others. ASP.NET Core MVC filters allow you to run code before or after certain

steps in the request processing pipeline. For instance, a filter can run before and after model binding,

before and after an action, or before and after an action’s result. You can also use an authorization

filter to control access to the rest of the pipeline. Figures 7-X shows how request execution flows

through filters, if configured.

https://msdn.microsoft.com/en-us/magazine/mt763233.aspx
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

43 Chapter 7

 Developing ASP.NET Core MVC Apps

Figure 7-X Request execution through filters and request pipeline.

Filters are usually implemented as attributes, so you can apply them controllers or actions. When

added in this fashion, filters specified at the action level override or build upon filters specified at the

controller level, which themselves override global filters. For example, the [Route] attribute can be

used to build up routes between controllers and actions. Likewise, authorization can be configured at

the controller level, and then overridden by individual actions, as the following sample demonstrates:

[Authorize]

public class AccountController : Controller

{

 [AllowAnonymous]

 public async Task<IActionResult> Login() {}

 public async Task<IActionResult> ForgotPassword() {}

44 Chapter 7

 Developing ASP.NET Core MVC Apps

}

The first method, Login, uses the AllowAnonymous filter (attribute) to override the Authorize filter set

at the controller level. The ForgotPassword action (and any other action in the class that doesn’t have

an AllowAnonymous attribute) will require an authenticated request.

Filters can be used to eliminate duplication in the form of common error handling policies for APIs.

For example, a typical API policy is to return a NotFound response to requests referencing keys that

do not exist, and a BadRequest response if model validation fails. The following example

demonstrates these two policies in action:

[HttpPut("{id}")]

 public async Task<IActionResult> Put(int id, [FromBody]Author

author)

 {

 if ((await _authorRepository.ListAsync()).All(a => a.Id !=

id))

 {

 return NotFound(id);

 }

 if (!ModelState.IsValid)

 {

 return BadRequest(ModelState);

 }

 author.Id = id;

 await _authorRepository.UpdateAsync(author);

 return Ok();

 }

Don’t allow your action methods to become cluttered with conditional code like this. Instead, pull the

policies into filters that can be applied on an as-needed basis. In this example, the model validation

check, which should occur any time a command is sent to the API, can be replaced by the following

attribute:

45 Chapter 7

 Developing ASP.NET Core MVC Apps

public class ValidateModelAttribute : ActionFilterAttribute

{

 public override void OnActionExecuting(ActionExecutingContext

context)

 {

 if (!context.ModelState.IsValid)

 {

 context.Result = new

BadRequestObjectResult(context.ModelState);

 }

 }

}

Likewise, a filter can be used to check if a record exists and return a 404 before the action is executed,

eliminating the need to perform these checks in the action. Once you’ve pulled out common

conventions and organized your solution to separate infrastructure code and business logic from your

UI, your MVC action methods should be extremely thin:

 // PUT api/authors2/5

 [HttpPut("{id}")]

 [ValidateAuthorExists]

 public async Task<IActionResult> Put(int id, [FromBody]Author

author)

 {

 await _authorRepository.UpdateAsync(author);

 return Ok();

 }

You can read more about implementing filters and download a working sample from the MSDN

article, Real World ASP.NET Core MVC Filters.

https://msdn.microsoft.com/en-us/magazine/mt767699.aspx

46 Chapter 7

 Developing ASP.NET Core MVC Apps

References – Structuring Applications

Areas

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/areas

MSDN – Feature Slices for ASP.NET Core MVC

https://msdn.microsoft.com/en-us/magazine/mt763233.aspx

Filters

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

MSDN – Real World ASP.NET Core MVC Filters

https://msdn.microsoft.com/en-us/magazine/mt767699.aspx

Security

Securing web applications is a large topic, with many considerations. At its most basic level, security

involves ensuring you know who a given request is coming from, and then ensuring that that request

only has access to resources it should. Authentication is the process of comparing credentials

provided with a request to those in a trusted data store, to see if the request should be treated as

coming from a known entity. Authorization is the process of restricting access to certain resources

based on user identity. A third security concern is protecting requests from eavesdropping by third

parties, for which you should at least ensure that SSL is used by your application.

Authentication

ASP.NET Core Identity is a membership system you can use to support login functionality for your

application. It has support for local user accounts as well as external login provider support from

providers like Microsoft Account, Twitter, Facebook, Google, and more. In addition to ASP.NET Core

Identity, your application can use windows authentication, or a third-party identity provider like

Identity Server.

ASP.NET Core Identity is included in new project templates if the Individual User Accounts option is

selected. This template includes support for registration, login, external logins, forgotten passwords,

and additional functionality.

https://msdn.microsoft.com/en-us/magazine/mt763233.aspx
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl
https://github.com/IdentityServer/IdentityServer4

47 Chapter 7

 Developing ASP.NET Core MVC Apps

Figure 7-X Select Individual User Accounts to have Identity preconfigured.

Identity support is configured in Startup, both in ConfigureServices and Configure:

public void ConfigureServices(IServiceCollection services)

{

 // Add framework services.

 services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("DefaultCon

nection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()

 .AddEntityFrameworkStores<ApplicationDbContext>()

 .AddDefaultTokenProviders();

48 Chapter 7

 Developing ASP.NET Core MVC Apps

 services.AddMvc();

}

public void Configure(IApplicationBuilder app)

{

 app.UseStaticFiles();

 app.UseIdentity();

 app.UseMvc(routes =>

 {

 routes.MapRoute(

 name: "default",

 template: "{controller=Home}/{action=Index}/{id?}");

 });

}

It’s important that UseIdentity appear before UseMvc in the Configure method. When configuring

Identity in ConfigureServices, you’ll notice a call to AddDefaultTokenProviders. This has nothing to do

with tokens that may be used to secure web communications, but instead refers to providers that

create prompts that can be sent to users via SMS or email in order for them to confirm their identity.

You can learn more about configuring two-factor authentication and enabling external login providers

from the official ASP.NET Core docs.

Authorization

The simplest form of authorization involves restricting access to anonymous users. This can be

achieved by simply applying the [Authorize] attribute to certain controllers or actions. If roles are

being used, the attribute can be further extended to restrict access to users who belong to certain

roles, as shown:

[Authorize(Roles = "HRManager,Finance")]

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/

49 Chapter 7

 Developing ASP.NET Core MVC Apps

public class SalaryController : Controller

{

}

In this case, users belonging to either the HRManager or Finance roles (or both) would have access to

the SalaryController. To require that a user belong to multiple roles (not just one of several), you can

apply the attribute multiple times, specifying a required role each time.

Specifying certain sets of roles as strings in many different controllers and actions can lead to

undesirable repetition. You can configure authorization policies, which encapsulate authorization

rules, and then specify the policy instead of individual roles when applying the [Authorize] attribute:

[Authorize(Policy = "CanViewPrivateReport")]

public IActionResult ExecutiveSalaryReport()

{

 return View();

}

Using policies in this way, you can separate the kinds of actions being restricted from the specific roles

or rules that apply to it. Later, if you create a new role that needs to have access to certain resources,

you can just update a policy, rather than updating every list of roles on every [Authorize] attribute.

Claims

Claims are name value pairs that represent properties of an authenticated user. For example, you

might store users’ employee number as a claim. Claims can then be used as part of authorization

policies. You could create a policy called “EmployeeOnly” that requires the existence of a claim called

“EmployeeNumber”, as shown in this example:

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

 services.AddAuthorization(options =>

 {

50 Chapter 7

 Developing ASP.NET Core MVC Apps

 options.AddPolicy("EmployeeOnly", policy =>

policy.RequireClaim("EmployeeNumber"));

 });

}

This policy could then be used with the [Authorize] attribute to protect any controller and/or action,

as described above.

TODO: A section on API security and tokens.

References – Security

Security Docs Overview

https://docs.microsoft.com/en-us/aspnet/core/security/

Enforcing SSL in an ASP.NET Core App

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl

Introduction to Identity

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

Introduction to Authorization

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction

Client Communication

TBD – Discuss SignalR.

Domain-Driven Design – Should You Apply It?

TBD

Deployment

TBD

References – Client Web Technologies

Title

https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-cloud/

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

 Chapter 8

S E C T I O N

8

 Working with
Data in ASP.NET
Core Apps

“Data is a precious thing and will last longer than the systems themselves.”

Tim Berners-Lee

Summary

Data access is an important part of almost any software application. ASP.NET Core supports a variety

of data access options, including Entity Framework Core (and Entity Framework 6 as well), and can

work with any .NET data access framework. The choice of which data access framework to use

depends on the application’s needs. Abstracting these choices from the ApplicationCore and UI

projects, and encapsulating implementation details in Infrastructure, helps to produce loosely

coupled, testable software.

Entity Framework Core (for relational databases)

If you’re writing a new ASP.NET Core application that needs to work with relational data, then Entity

Framework Core (EF Core) is the recommended way for your application to access its data. Like

ASP.NET Core, EF Core has been rewritten from the ground up to support modular cross-platform

applications

EF or micro-ORM?

TBD

52 Chapter 8

 Working with Data

SQL or NoSQL

TBD

Azure DocDB

TBD

Other Persistence Options

TBD

53 Chapter 9

S E C T I O N

9

 Testing ASP.NET
Core MVC Apps

“If you don’t like unit testing your product, most likely your customers won’t like to

test it, either.”

Anonymous

Summary

TBD

Kinds of Automated Tests

TBD

Unit Tests

TBD

Integration Tests

TBD

Functional Tests

TBD

Organizing Test Projects

Test projects can be organized however works best for you. It’s a good idea to separate tests by type

(unit test, integration test) and by what they are testing (by project, by namespace). Whether this

separation consists of folders within a single test project, or multiple test projects, is a design decision.

One project is simplest, but for large projects with many tests, or in order to more easily run different

sets of tests, you might want to have several different test projects.

54 Chapter 9

 Testing

Unit Testing ASP.NET Core Apps

TBD

Integration and Functional Tests

TBD

.

55 Chapter 10

S E C T I O N

10

 Development
process for Azure-
hosted ASP.NET
Core applications

“With the cloud, individuals and small businesses can snap their fingers and

instantly set up enterprise-class services.”

Roy Stephan

Vision

Develop well-designed ASP .NET applications the way you like, using Visual Studio or the dotnet CLI and

Visual Studio Code or your editor of choice.

Development environment for ASP.NET Core apps

Development tools choices: IDE or editor

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has you

covered when developing Docker applications.

Visual Studio with Docker Tools. If you’re using Visual Studio 2015 you can install the add-in tools

“Docker Tools for Visual Studio”. If you’re using Visual Studio 2017, Docker Tools are already installed.

In either case you can develop, run and validate your applications directly in the target Docker

environment. F5 your application (single container or multiple containers) directly into a Docker host

with debugging, or CTRL + F5 to edit & refresh your app without having to rebuild the container. This

is the simplest and most powerful choice for Windows developers targeting Docker containers for

Linux or Windows.

Download Docker Tools for Visual Studio

https://visualstudiogallery.msdn.microsoft.com/0f5b2caa-ea00-41c8-b8a2-058c7da0b3e4

56 Chapter 10

 Development Process for Azure

Download Docker for Mac and Windows

Visual Studio Code and Docker CLI (Cross-Platform Tools for Mac, Linux and Windows). If you prefer

a lightweight and cross-platform editor supporting any development language, you can use Microsoft

Visual Studio Code and Docker CLI. These products provide a simple yet robust experience that

streamlines the developer workflow. By installing either the “Docker for Mac” or “Docker for Windows”

development environment, Docker developers can use a single Docker CLI to build apps for both

Windows and Linux. Additionally, Visual Studio Code supports extensions for Docker such as

intellisense for Dockerfiles and shortcut-tasks to run Docker commands from the editor.

Download Visual Studio Code

Download Docker for Mac and Windows

.NET languages and frameworks for ASP.NET Core

As introduced in initial sections, you can use .NET Framework, .NET Core, or the OSS project Mono

when developing ASP.NET Core applications. You can develop in C#, F# or Visual Basic on Windows,

Mac, or Linux systems, depending on the chosen framework.

Development workflow for Azure-hosted ASP.NET
Core apps

The application development lifecycle starts from each developer’s machine, coding the app using

their preferred language and testing it locally. Developers may choose their preferred source control

system and can configure Continuous Integration (CI) and/or Continuous Deployment (CD) using a

build server or based on built-in Azure features.

The inner-loop development workflow that utilizes Azure can use the following process. Note that the

initial steps to set up the environment are not included, as that has to be done only once.

Workflow for developing Azure-hosted ASP.NET Core applications

TBD

The following are the basic steps you usually take when building an ASP.NET Core app, hosted in

Azure, as illustrated in Figure X-XX.

Figure X-XX. Step-by-step workflow for building ASP.NET Core apps and hosting them in Azure

In this guide, this whole process is detailed and every critical step is explained.

When using a CLI+Editor development approach like using just Visual Studio Code plus Docker CLI,

you need to know every step. If using Visual Studio Code and Docker CLI, check the eBook

Containerized Docker Application lifecycle with Microsoft Platforms and Tools for explicit non-Visual

Studio details.

When using Visual Studio 2015 or 2017, many of those steps are transparent so it dramatically

improves your productivity. This is especially true when using Visual Studio 2017 (because…).

http://www.docker.com/products/docker
http://www.docker.com/products/docker
https://code.visualstudio.com/download
http://www.docker.com/products/docker
http://www.docker.com/products/docker
http://aka.ms/dockerlifecycleebook/

57 Chapter 10

 Development Process for Azure

However, making those steps transparent doesn’t mean that you don’t need to know what’s going on

underneath with dotnet and Azure. Therefore, every step is detailed in the following step-by-step

guidance.

Visual Studio simplifies that workflow to “the minimum” as explained in the next sections.

Step 1. Start coding and create your initial app/service baseline

The way you develop your application is similar to the way you would do it without Docker. The

difference is that while developing for Docker, you are deploying and testing your application or

services running within Docker containers placed in your local environment (either a Linux VM or

Windows).

Update to show installation of Azure development SDK and tools.

Setup of your local environment

With the latest version of Docker for Windows, it is easier than ever to develop Docker applications.

The setup is straightforward, as explained in the following reference.

Installing Docker for Windows: https://docs.docker.com/docker-for-windows/

In addition, you’ll need Visual Studio 2015 with the tools for Docker, or Visual Studio 2017 which

includes the tooling for Docker if you selected the “.NET Core and Docker” workload during

installation, as shown in Figure x-x.

Visual Studio 2017
https://www.visualstudio.com/vs/visual-studio-2017-rc/

Visual Studio Tools for Docker:

http://aka.ms/vstoolsfordocker

Figure X-X. Selecting the Docker and .NET Core workload

https://docs.docker.com/docker-for-windows/
https://www.visualstudio.com/vs/visual-studio-2017-rc/

58 Chapter 10

 Development Process for Azure

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/visual-studio-tools-for-docker

Working with .NET and Visual Studio

You can start coding your app in .NET (usually in .NET Core if you are planning to use containers) even

before enabling Docker in your app and deploying/testing in Docker. However, it’s recommended that

you start working on Docker as soon as possible, as that will be the real environment and any issues

can be discovered as soon as possible. This is very much encouraged because Visual Studio makes it

so easy to work with Docker that it almost feels transparent, even with debugging support with multi-

container applications.

Step 2. Create a dockerfile related to an existing .NET base image

Replace with package/publish options for Azure.

References - Base Docker images

Building Docker Images for .NET Core Applications

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images

Build your own images

https://docs.docker.com/engine/tutorials/dockerimages/

Step 3. Create your custom Docker images embedding your service in it

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images
https://docs.docker.com/engine/tutorials/dockerimages/

59 Chapter 10

 Development Process for Azure

Step 4. Define your services in docker-compose.yml when building a
multi-container Docker app with multiple services

TBD.

Step 5. Build and run your Docker app

Run the app.

Running and debugging a multi-container application with Visual Studio

Again, when using Visual Studio 2017 it cannot get simpler and you are not only running the multi-

container application but being able to debug all of its containers at once.

As mentioned before, each time you add “Docker Solution Support” to a specific project within a

solution, you will get that project configured in the global/solution docker-compose.yml, so you will

be able to run or debug the whole solution at once because Visual Studio will spin up a container per

project that has Docker solution Support enabled while creating all the internal steps for you (dotnet

publish, docker build to build the Docker images, etc.).

The important point here is that, as

shown in figure 5-26, in Visual

Studio 2017 you have an additional

F5 button that we have added so

you can run or debug a whole

multiple container application by

running all the containers that are

defined in the docker-compose.yml

file at the solution level that was modified by Visual Studio while adding “Docker Solution Support” to

each of your projects. This means that you could set several breakpoints up, each breakpoint in a

different project/container and while debugging from Visual Studio you will be stopping in

breakpoints defined in different projects and running on different containers.

For further details on the services implementation and deployment to a Docker host, read the

following articles.

Deploy an ASP.NET container to a remote Docker host:
https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/

IMPORTANT NOTE: “docker-compose up” and “docker run” (or running/debugging the containers

from Visual Studio which is under the covers using the same techniques) might be enough for testing

your containers in your development environment, but might not be used at all if you are targeting

Docker clusters and orchestrators like Docker Swarm, Mesosphere DC/OS or Kubernetes, in order

Figure X-XX. Running multi-container apps in Visual Studio 2017

https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/

60 Chapter 10

 Development Process for Azure

to be able to scale-up. If using a cluster, like Docker Swarm mode (available in Docker for Windows

and Mac since version 1.12), you need to deploy and test with additional commands like “docker

service create” for single services or when deploying an app composed by several containers, using

"docker compose bundle" and "docker deploy myBundleFile", by deploying the composed app as a

"stack" as explained in the article Distributed Application Bundles, from Docker.

For DC/OS and Kubernetes you would use different deployment commands and scripts, as well.

Step 6. Test your Docker application (locally, in your local CD VM)

This step will vary depending on what is your app doing.

In a very simple .NET Core Web API hello world deployed as a single container/service, you’d just need

to access the service by providing the TCP port specified in the dockerfile, as in the following simple

example.

Testing and Debugging containers with Visual Studio

As mentioned, when running/debugging the containers with Visual Studio you’ll be able to debug the

.NET application running on containers in a similar way than you could do when running on the plain

OS.

For further details on how to debug containers, read the following articles.

Build, Debug, Update and Refresh apps in a local Docker container:
https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-edit-and-refresh/

https://docs.docker.com/engine/swarm/
https://blog.docker.com/2016/06/docker-app-bundle/
https://mesosphere.com/blog/2015/09/02/dcos-cli-command-line-tool-datacenter/
http://kubernetes.io/docs/user-guide/deployments/

61 Chapter 10

 Development Process for Azure

Simplified workflow when developing containers with Visual Studio

Effectively, the workflow when using Visual Studio is a lot simpler than a regular Docker container

development process because most of the steps required by Docker related to dockerfile and docker-

compose.yml are hidden or simplified by Visual Studio, as shown in the image X-XX.

Even further, the step number 2, “Add Docker support to your projects” needs to be done just once.

So usually that process or workflow remains pretty similar to your usual development tasks when

using plain .NET. However, you still need to know what’s going on under the covers (images build

process, what base images you are using, deployment of containers, etc.) and sometimes you will also

need to edit the dockerfile or docker-compose.yml when customizing the behaviors. However, for the

most part of the work, it’ll be greatly simplified by Visual Studio, making you a lot more productive.

Figure X-XX. Simplified workflow when developing with Visual Studio

62 Chapter 11

 Azure Hosting Recommendations

S E C T I O N

11

 Azure Hosting
Recommendations
for ASP.NET Core
Web Apps

“Line-of-business leaders everywhere are bypassing IT departments to get

applications from the cloud (aka SaaS) and paying for them like they would a

magazine subscription. And when the service is no longer required, they can cancel

the subscription with no equipment left unused in the corner.”

Daryl Plummer, Gartner analyst

Summary

Whatever your application’s needs and architecture, Windows Azure can support it. Your hosting

needs can be me

Web Applications

TBD – Azure Web App, container, VM

APIs

TBD – Azure Functions, microservices/container, Azure Web App

63 Chapter 11

 Azure Hosting Recommendations

Logical Processes

TBD – Azure Functions

Data

TBD – Windows Azure SQL Database, Azure DocumentDB, Azure Storage, Redis, ,

References

https://azure.microsoft.com/en-us/solutions/architecture/

https://azure.microsoft.com/en-us/solutions/architecture/

64 Chapter 11

 Azure Hosting Recommendations

Key takeaways
• TBD

