= Microsoft

Architecting ana
Developing Modern
Web Applications with
ASPNET Core and

Microsoft Azure

Steve Smith
DeviQ

Early Draft

PUBLISHED BY

DevDiv, .NET and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2016 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

This book is provided “as-is” and expresses the author's views and opinions. The views, opinions and
information expressed in this book, including URL and other Internet website references, may change
without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association
or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are
trademarks of the Microsoft group of companies. All other marks are property of their respective

owners.

Author:
Steve Smith, Founder, DevIQ

Participants and reviewers (TBD):
Cesar de la Torre, Sr. PM, .NET product team, Microsoft
John Gossman, Partner Software Eng, Azure product team, Microsoft
Jeffrey Richter, Partner Software Eng, Azure product team, Microsoft
Steve Lasker, Sr. PM, Visual Studio product team, Microsoft
Michael Friis, Product Manager, Docker Inc
Glenn Condron, Sr. PM, .NET product team, Microsoft
David Carmona, Principal PM Lead, .NET product team, Microsoft
Mark Fussell, Principal PM Lead, Azure Service Fabric product team, Microsoft
Anand Chandramohan, Sr. Product Manager, Azure team, Microsoft

Scott Hunter, Partner Director PM, .NET product group, Microsoft

mn Microsoft

Contents

Introduction 1
PUIDOSE ...t e e 1
WhO ShOUIA USE ThisS GUILE ...ttt sttt ss st 2
HOW YOU CaN USE thiS QUITE ..ottt sttt 2
Characteristics of Modern Web Applications 3
SUMIMIY .ottt sttt bbb bbb bbb bbb 3
Reference Application: @SHOPONWED ...ttt sttt 3
Cloud-HOSted @Nd SCAIADIE ...ttt sttt sttt 4
CrOSS PIAtfOIM ettt bbb 4
Modular and LOOSElY COUPIEA ...ttt 5
Easily Tested With AUTOMAtEA TESTS ...ttt ettt 5
Traditional and SPA BehaVviors SUPPOITEd. ... ss s ssss s sans 5
Simple Development and DEPIOYMENT ...ttt ss ettt ettt sseees 5
Traditional ASP.NET @nd WED FOMMIS ...ttt siessise s st sisessisessesesssnesson 6
Choosing Between Traditional Web Apps and Single Page Apps (SPAs) 7

Summary

When to choose traditional web apps
When to choose SPAs

Decision table — Traditional Web or SPA

Architectural Principles

Summary

Common design principles

Separation of Concerns

Encapsulation

Dependency Inversion Principle

Explicit Dependencies Principle

Single Responsibility Principle

Don't Repeat Yourself

Persistence Ignorance

Bounded Contexts

Common Web Application Architectures 14
SUMMEIY oottt st e e e sttt 14
What is @ MmOoNnolithic @apPlICATIONT ...t eseee sttt ssessesse st sse s e 14
All-IN-0ONE APPIICATIONS ..o 14
WAL @IE LQYEIS? ..ottt e e e e 15
Traditional “N-Layer” architecture appliCatioNS.........cocevieieerieeeeeeeee et 17
ClEAN AICNITECEUIE ..ottt sttt 20
Monolithic applications @aNd CONTAINETS..........coviririerrreeesesiee et st ss st st ss st 22

Monolithic application deployed as @ CONTAINET ...ttt 24

Common Client Side Web Technologies 26
SUMIMIATY ottt e s s s e s e8RS es bbbttt 26
HTIMIL oottt etttk 4888488848 26
S ettt R R RS 27
JAVASCIIPT ottt bbbkttt 28

Legacy Web APPS WIth JQUETY ...ttt sttt sttt 28
ANGUIAE 2 SPAS ...ttt e 29
REACTIS SPAS ..ottt e e e 29

Developing ASP.NET Core MVC Apps 30
SUMIMIAIY ettt s b b b bbbt 30
Mapping REQUESES t0 RESPONSES ...ttt sttt ensees 30
WOrking With DEPENAENCIES ...t e 30
Structuring the Application
SEOUNTTY wvrrerieetiseis ettt ettt bbb bbb bbb bbbt
CleNt COMMUNICALION c.eciveieeiee ettt sttt bbb 31
Domain-Driven Design — Should YOU APPIY 17ttt essessssnsees 31
DIEPIOYMENT ..otttk ekttt 31

Working with Data in ASP.NET Core Apps 32
SUIMIMATY ettt ettt bbb bbb bbb 32
SQL OF INOSQL ottt es sttt st 32
Entity Framework Core (for relational databases) ...t sse s 32

EF or micro-ORM?
Azure DocDB

Other Persistence Options

Testing ASP.NET Core MVC Apps 34
SUIMIMATY ottt b bbb bbb 34
KiNAS Of AULOMATEA TESES w..uuveueeeieeiieeiie ittt sttt sttt 34

Unit Tests

Integration Tests

FUNCLIONAT TESES ..ottt sttt 58t 34
UNit TEStING ASP.INET COME APPSoivreimeiireriineriierisesesessssessseessseesssessssessssesssnessssessssesssssssssssssessssessssesssnesssnesssessssens 34
Integration and FUNCLIONEI TESTS ...t esese st ssise st st ssesss st sseessseesens 34

Development process for Azure-hosted ASP.NET Core applications 36
VISTON ettt e s 36
Development environment for ASP.INET COIE @PPS ..vvrverreirenesinesisessessssesssnnns 36

Development tools ChOICES: IDE OF @AItON ...ttt sttt sttt seas 36

.NET languages and frameworks for ASP.INET COIE ..ot esessssesssssssssssssssssssssssssnees 37
Development workflow for Azure-hosted ASP.NET COre @pPsccccemerrermieceimecesmneesisessisessssnessssnseess

Workflow for developing Azure-hosted ASP.NET Core applications

Simplified workflow when developing containers with Visual StUdio ..o, 43

Azure Hosting Recommendations for ASP.NET Core Web Apps 44
SUMIMIAIY ettt bbb b bbbt 44
VWD AP ICATIONS .ottt sttt 44
AAPLS oot R R 44
LOGICAI PrOCESSES ...eonieercierceee ettt kbt 45
DAT@ oo e et 45
KEY TAKEAWAYS ... ereeerieii ettt kb 46

SECTION /‘

Introduction

.NET Core and ASP.NET Core offer several advantages over traditional .NET development. You should
use .NET Core for your server applications if some or all of the following are important to your
application’s success:

e Cross-platform support

e Use of microservices

e Use of Docker containers

e High performance and scalability requirements

e Side-by-side versioning of .NET versions by application on the same server

More and more organizations are choosing to hose their web applications in the cloud using services
like Microsoft Azure. You should consider hosting your application in the cloud if the following are
important to your application or organization:

e Reduced investment in data center costs (hardware, software, space, utilities, etc)
e Flexible pricing (pay based on usage, not for idle capacity)

e Extreme reliability

e Improved app mobility; easily change where and how your app is deployed

e Flexible capacity; scale up or down based on actual needs

Building web applications with ASP.NET Core, hosted in Microsoft Azure, offers numerous competitive
advantages over traditional alternatives. ASP.NET Core is optimized for modern web application
development practices and cloud hosting scenarios. In this guide, you will learn how to architect your
ASP.NET Core applications to best take advantage of these capabilities.

Purpose

This guide provides end-to-end guidance on building monolithic web applications using ASP.NET
Core and Azure.

This guide is complementary to the "Architecting and Developing Containerized and Microservice-
based Applications with .NET" which focuses more on Docker, Microservices, and Deployment of
Containers to host enterprise applications.

Architecting and Developing Containerized Microservice Based Apps in .NET

https://aka.ms/dockerlifecycleebook (UPDATE LINK)

1 Chapter 1
Introduction

https://aka.ms/dockerlifecycleebook

Who should use this guide

The audience for this guide is mainly Developers, Development Leads, and Architects who are
interested in building modern web applications using Microsoft technologies and services in the
cloud.

A secondary audience is technical decision makers who are already familiar ASP.NET and/or Azure and
are looking for information on whether it makes sense to upgrade to ASP.NET Core for new or
existing projects.

How you can use this guide

This guide has been condensed into a relatively small document that focuses on building web
applications with modern .NET technologies and Windows Azure. As such, it can be read in its entirety
to provide a foundation of understanding such applications and their technical considerations. The
guide, along with its sample application, can also serve as a starting point or reference. Use the
associated sample application as a template for your own applications, or to see how you might
organize your application’s component parts. Refer back to the guide’s principles and coverage of
architecture and technology options and decision considerations when weighing these choices for
your own application.

Feel free to forward this guide to your team to help ensure a common understanding of these
considerations and opportunities. Having everybody working from a common set of terminology and
underlying principles will help ensure consistent application of architectural patterns and practices.

References

Choosing between .NET Core and .NET Framework for server apps
https://docs.microsoft.com/en-us/dotnet/articles/standard/choosing-core-framework-server

2 Chapter 1
Introduction

https://docs.microsoft.com/en-us/dotnet/articles/standard/choosing-core-framework-server

Characteristics of
Modern Web
Applications

“... with proper design, the features come cheaply. This approach is arduous, but
continues to succeed.”

Dennis Ritchie

Summary

Modern web applications have higher user expectations and greater demands than ever before.
Today's web apps are expected to be available 24/7 from anywhere in the world, and usable from
virtually any device or screen size. Web applications must be secure, flexible, and scalable to meet
spikes in demand. Increasingly, complex scenarios should be handled by rich user experiences built on
the client using JavaScript, and communicating efficiently through web APIs.

ASP.NET Core is optimized for modern web applications and cloud-based hosting scenarios. Its
modular design enables applications to depend on only those features they actually use, which
improves application security and performance while reducing hosting resource requirements.

Reference Application: eShopOnWeb

This guidance includes a reference application, eShopOnWeb, that demonstrates some of the
principles and recommendations. The application is a simple online store which supports browsing
through a catalog of shirts, coffee mugs, and other marketing items. The reference application is
deliberately simple in order to make it easy to understand.

Figure 2-1. eShopOnWeb

3 Chapter 2
Characteristics...

4
Q2

[e eSHOP
. ONCONTAINERS

ON SAL
THIS WEEK

Showing 10 of R prooucts - Rage | - 2 Naxt
= =]
M
-
oy
’?) o A
V .)
.
-
NET BOT BLACK SWEATSHIRY NET BLACK & WHITE MUC PRISM WHITE T-SHIRY

Reference Application

eShopOnWeb
https://github.com/dotnet/eShopOnWeb

Cloud-Hosted and Scalable

ASP.NET Core is optimized for the cloud (public cloud, private cloud, any cloud) because it is low-
memory and high-throughput. The smaller footprint of ASP.NET Core applications means you can
host more of them on the same hardware, and you pay for fewer resources when using pay-as-you go
cloud hosting services. The higher-throughput means you can serve more customers from an
application given the same hardware, further reducing the need to invest in servers and hosting
infrastructure.

Cross Platform

ASP.NET Core is cross-platform, and can run on Linux and MacOS as well as Windows. This opens up
many new options for both development and deployment of apps built with ASP.NET Core. Docker
containers, which typically run Linux today, can host ASP.NET Core applications, allowing them to take
advantage of the benefits of containers and microservices (link to microservices and containers
ebook).

4 Chapter 2
Characteristics of Modern Web Applications

https://github.com/dotnet/eShopOnWeb

Modular and Loosely Coupled

Nuget packages are first-class citizens in .NET Core, and ASP.NET Core apps are composed of many
libraries through Nuget. This granularity of functionality helps ensure apps only depend on and
deploy functionality they actually require, reducing their footprint and security vulnerability surface
area.

ASP.NET Core also fully supports dependency injection, both internally and at the application level.
This enables apps to loosely coupled to interfaces, which can have multiple implementations that can
be swapped out as needed. Looser coupling makes applications easier to extend, maintain, and test.

Easily Tested with Automated Tests

ASP.NET Core applications support unit testing, and their loose coupling and support for dependency
injections makes it easy to swap infrastructure concerns with fake implementations for test purposes.
ASP.NET Core also ships a TestServer that can be used to host apps in memory. Functional tests can
then make requests to this in-memory server, exercising the full application stack (including
middleware, routing, model binding, filters, etc.) and getting back a response, all in a fraction of the
time it would take to host the app on a real server and make requests through the network layer.
These tests are especially easy to write, and valuable, for APIs, which are increasingly important in
modern web applications.

Traditional and SPA Behaviors Supported

Traditional web applications have involved little client-side behavior, but instead have relied on the
server for all navigation, queries, and updates the app might need to make. Each new operation made
by the user would be translated into a new web request, with the result being a full page reload in the
end user’s browser. Classic Model-View-Controller (MVC) frameworks typically follow this approach,
with each new request corresponding to a different controller action, which in turn would work with a
model and return a view. Some individual operations on a given page might be enhanced with AJAX
(Asynchronous JavaScript And XML) functionality, but the overall architecture of the app used many
different MVC views and URL endpoints.

Single Page Applications (SPAs), by contrast, involve very few dynamically generated server-side page
loads (if any). Many SPAs are initialized within a static HTML file which loads the necessary JavaScript

libraries to start and run the app. These apps make heavy usage of web APIs for their data needs, and
can provide much richer user experiences.

Many web applications involve a combination of traditional web application behavior (typically for
content) and SPAs (for interactivity). ASP.NET Core supports both MVC and web APIs in the same
application, using the same set of tools and underlying framework libraries.

Simple Development and Deployment

ASP.NET Core applications can be written using simple text editors and command line interfaces, or
full-featured development environments like Visual Studio. Monolithic applications are typically
deployed to a single endpoint. Deployments can easily be automated to occur as part of a continuous
integration (Cl) and continuous delivery (CD) pipeline. In addition to traditional CI/CD tools, Windows

5 Chapter 2
Characteristics of Modern Web Applications

Azure has integrated support for git repositories and can automatically deploy updates as they are
made to a specified git branch or tag.

Traditional ASP.NET and Web Forms

In addition to ASP.NET Core, traditional ASP.NET 4.x continues to be a robust and reliable platform for
building web applications. ASP.NET supports MVC and Web API development models, as well as Web
Forms, which is well-suited to rich page-based application development and features a rich third-
party component ecosystem. Windows Azure has great longstanding support for ASP.NET 4.x
applications, and many developers are familiar with this platform.

References — Modern Web Applications

Introduction to ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/

Six Key Benefits of ASP.NET Core which make it Different and Better
http://www.trigent.com/blog/six-key-benefits-of-asp-net-core-1-0-which-make-it-different-better/
Testing in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/testing/

6 Chapter 2
Characteristics of Modern Web Applications

https://docs.microsoft.com/en-us/aspnet/core/
http://www.trigent.com/blog/six-key-benefits-of-asp-net-core-1-0-which-make-it-different-better/
https://docs.microsoft.com/en-us/aspnet/core/testing/

Section 3

Choosing
Between
Traditional Web
Apps and Single
Page Apps (SPASs)

“Atwood’s Law: Any application that can be written in JavaScript, will eventually be
written in JavaScript.”

Jeff Atwood

Summary

There are two general approaches to building web applications today: traditional web applications
that perform most of the application logic on the server, and single page applications (SPAs) that
perform most of the user interface logic in a web browser, communicating with the web server
primarily using web APIs.

You should traditional web applications when:

e Your application has little behavior, or its behavior is primarily read-only and public
e Your application needs to function in browsers without JavaScript support.
e Your team is unfamiliar with JavaScript or TypeScript development techniques

You should use a SPA when:

7 Chapter 3
Choosing Between Traditional Web Apps and SPAs

e Your application must expose a rich user interface with many features
e Your team is familiar with JavaScript and/or TypeScript development
e Your application must already expose an API for other (internal or public) clients

When to choose traditional web apps

The following is a more detailed explanation of the previously-stated reasons for picking traditional
web applications.

Your application has little behavior, or its behavior is primarily read-only and public

Many web applications are primarily consumed in a read-only fashion by the vast majority of their
users. For example, a search engine might consist of a single entry point with a textbox and a second
page for displaying search results. Anonymous users can easily make requests, and there is little need
for client-side logic. Likewise, a blog or content management system'’s public-facing application
usually consists mainly of content with little client-side behavior. Such applications are easily built as
traditional server-based web applications which perform logic on the web server and render HTML to
be displayed in the browser. The fact that each unique page of the site has its own URL that can be
bookmarked and indexed by search engines (by default, without having to add this as a separate
feature of the application) is also a clear benefit in such scenarios.

Your application needs to function in browsers without JavaScript support

Web applications that need to function in browsers with limited or no JavaScript support should be
written using traditional web app workflows (or at least be able to fall back to such behavior). SPAs
require client-side JavaScript in order to function; if it's not available, SPAs are not a good choice.

Your team is unfamiliar with JavaScript or TypeScript development techniques

If your team is unfamiliar with JavaScript or TypeScript, but is familiar with server-side web application
development, then they will probably be able to deliver a traditional web app more quickly than a
SPA. Unless learning to program SPAs is a goal, or the user experience afforded by a SPA is required,
traditional web apps are a more productive choice for teams who are already familiar with building
them.

When to choose SPAs

The following is a more detailed explanation of when to choose a Single Page Applications style of
development for your web app.

Your application must expose a rich user interface with many features

SPAs can support rich client-side functionality that doesn't require reloading the page as users take
actions or navigate between areas of the app. SPAs can load more quickly, fetching data in the
background, and individual user actions are more responsive since full page reloads are rare. SPAs can
support incremental updates, saving partially completed forms or documents without the user having
to click a button to submit a form. SPAs can support rich client-side behaviors, such as drag-and-drop,
much more readily than traditional applications. SPAs can be designed to run in a disconnected mode,
making updates to a client-side model that are eventually synchronized back to the server once a

8 Chapter 3
Choosing Between Traditional Web Apps and SPAs

connection is re-established. You should choose a SPA style application if your app’s requirements
include rich functionality that goes beyond what typical HTML forms offer.

Your team is familiar with JavaScript and/or TypeScript development

Writing SPAs requires familiarity with JavaScript and/or TypeScript and client-side programming
techniques and libraries. Your team should be competent in writing modern JavaScript using a SPA
framework like Angular or React.

References — SPA Frameworks

AngularJS

https://angularjs.org/

ReactJS

https://facebook.github.io/react/

Comparison of 4 Popular JavaScript Frameworks
https://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks

Your application must already expose an API for other (internal or public) clients

If you're already supporting a web API for other clients to use, it may require less effort to create a
SPA implementation that leverages these APIs rather than reproducing the logic in server-side form.
SPAs make extensive use of web APIs to query and update data as users interact with the application.

Decision table — Traditional Web or SPA

As a recap, the following is a summary decision table depending on your application and team
requirements and capabilities.

Factor Traditional Web App Single Page Application
Required Team Familiarity with Minimal Required
JavaScript/TypeScript

Support Browsers without Supported Not Supported
Scripting

Minimal Client-Side Well-Suited Overkill

Application Behavior

Rich, Complex User Interface Limited Well-Suited
Requirements

9 Chapter 3
Choosing Between Traditional Web Apps and SPAs

https://angularjs.org/
https://facebook.github.io/react/
https://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks

CHAPTER 4

Architectural
Principles

“If builders built buildings the way programmers wrote programs, then the first
woodpecker that came along would destroy civilization.”

Gerald Weinberg

Summary

Architect and design solutions with maintainability in mind. The principles outlined in this section can
help guide you toward architectural decisions that will result in clean, maintainable applications.
Generally, these principles will guide you toward building applications out of discrete components
that are not tightly coupled to other parts of your application, but rather communicate through
explicit interfaces or messaging systems.

Common design principles

Separation of Concerns

A guiding principle when developing software in general, and server-based web applications using
.NET, is Separation of Concerns. This principle asserts that software should be separated based on
the kinds of work it performs. For instance, consider an application that includes logic for identifying
noteworthy items to display to the user, and which formats such items in a particular way to make
them more noticeable. The behavior responsible for choosing which items to format should be kept
separate from the behavior responsible for formatting the items, since these are separate concerns
that are only coincidentally related to one another.

Architecturally, applications can be logically built to follow this principle by separating core business
behavior from infrastructure and user interface logic. Business rules and logic should ideally reside in
its own project, which should not depend on other projects in the application. This helps ensure that
the business model is easy to test and can evolve without being tightly coupled to low-level
implementation details. Separation of concerns is a key consideration behind the use of layers in
application architectures.

10 Chapter 4
Architectural Principles

Encapsulation

Different parts of an application should use encapsulation to insulate them from other parts of the
application. Application components and layers should be able to adjust their internal implementation
without breaking their collaborators as long as external contracts are not violated. Proper use of
encapsulation helps achieve loose coupling and modularity in application designs, since objects and
packages can be replaced with alternative implementations so long as the same interface is
maintained.

In classes, encapsulation is achieved by limiting outside access to the class’s internal state. If an
outside actor wants to manipulate the state of the object, it should do so through a well-defined
function (or property setter), rather than having direct access to the private state of the object.
Likewise, application components and applications themselves should expose well-defined interfaces
for their collaborators to use, rather than allowing their state to be modified directly. This frees the
application’s internal design to evolve over time without worrying that doing so will break
collaborators, so long as the public contracts are maintained.

Dependency Inversion Principle

The direction of dependency within the application should be in the direction of abstraction, not
implementation details. Most applications are written such that compile-time dependency flows in the
direction of runtime execution. That is, if module A calls a function in module B, which calls a function
in module C, then at compile time A will depend on B which will depend on C. Applying the
dependency inversion principle allows A to call methods on an abstraction that B implements, making
it possible for A to call B at runtime, but for B to depend on A at compile time (thus, inverting the
typical compile-time dependency).

TODO: Insert two figures demonstrating the above dependency relationships.

The dependency inversion principle is a key part of building loosely-coupled applications, since
implementation details can be written to depend on and implement higher level abstractions, rather
than the other way around. The resulting applications are more testable, modular, and maintainable as
a result. The practice of dependency injection is made possible by following the dependency inversion
principle.

Explicit Dependencies Principle

Methods and classes should explicitly require any collaborating objects they need in order to
function correctly. Class constructors provide an opportunity for classes to identify the things they
need in order to be in a valid state and to function properly. If you define classes that can be
constructed and called, but which will only function properly if certain global or infrastructure
components are in place, these classes are being dishonest with their clients. The constructor contract
is telling the client that it only needs the things specified (possibly nothing if the class is just using a
default constructor), but then at runtime it turns out the object really did need something else.

By following the Explicit Dependencies Principle, your classes and methods are being honest with their
clients about what they need in order to function. This makes your code more self-documenting and
your coding contracts more user-friendly, since users will come to trust that as long as they provide

11 Chapter 4
Architectural Principles

what's required in the form of method or constructor parameters, the objects they're working with will
behave correctly at runtime.

Single Responsibility Principle

The Single Responsibility Principle applies to object-oriented design, but can also be considered as an
architectural principle similar to separation of concerns. It states that objects should have only one
responsibility, and that as such they should have only one reason to change. Specifically, if the manner
in which they perform their one responsibility must be updated, that is the only situation in which that
object should need to change. Following this principle helps to produce more loosely-coupled and
modular systems, since many kinds of new behavior can be implemented as new classes, rather than
by adding additional responsibility to existing classes. Adding new classes is always safer than
changing existing classes, since no code yet depends on the new classes.

In a monolithic application, we can apply the single responsibility principle at a high level to the layers
in the application. Presentation responsibility should remain in the Ul project; data access
responsibility should be kept within an Infrastructure project. Business logic should be kept in the
application core project, where it can be easily tested and can evolve independently from other
responsibilities.

When this principle is applied to application architecture, and taken to its logical endpoint, you get
microservices. A given microservice should have a single responsibility, and if you need to extend the
behavior of a system, it's usually better to do it by adding additional microservices, rather than by
adding responsibility to an existing one.

[Learn more about microservices — book link]

Don’t Repeat Yourself

The application should avoid specifying behavior related to a particular concept in multiple places as
this is wasteful and is a frequent source of errors. Concepts, decisions, and behaviors that are defined
in multiple places within an application tend to replicate over time, as additional duplication is
performed. At some point, a change in requirements will require changing this behavior, and the
likelihood that at least one instance of the behavior will fail to be updated will result in inconsistent
behavior of the system.

Rather than duplicating logic, encapsulate it in a programming construct. Make this construct the
single authority over this behavior, and have any other part of the application that requires this
behavior use the new construct.

Note: Avoid binding together behavior that is only coincidentally repetitive. For example, just because
two different constants both have the same value, that doesn’t mean you should have only one
constant, if conceptually they're referring to different things.

12 Chapter 4
Architectural Principles

Persistence Ignorance

Persistence Ignorance (Pl) refers to types that need to be persisted, but whose code is unaffected by
the choice of persistence technology. Such types in .NET are sometimes referred to as Plain Old CLR
Objects (POCOs), because they do not need to inherit from a particular base class or implement a
particular interface. Persistence ignorance is valuable because it allows the same business model to be
persisted in multiple ways, offering additional flexibility to the application. Persistence choices might
change over time, from one database technology to another, or additional forms of persistence might
be required in addition to whatever the application started with (e.g. using a Redis cache or Azure
DocumentDb in addition to a relational database).

Bounded Contexts

Bounded contexts are a central pattern in Domain-Driven Design. They provide a way of tackling
complexity in large applications or organizations by breaking it up into separate conceptual modules.
Each conceptual module then represents a context which is separated from other contexts (hence,
bounded), and can evolve independently. Each bounded context should ideally be free to choose its
own names for concepts within it, and should have exclusive access to its own persistence store.

At a minimum, individual web applications should strive to be their own bounded context, with their
own persistence store for their business model, rather than sharing a database with other applications.
Communication between bounded contexts occurs through programmatic interfaces, rather than
through a shared database, which allows for business logic and events to take place in response to
changes that take place. Bounded contexts map closely to microservices, which also are ideally
implemented as their own individual bounded contexts.

References - Modern Web Applications

Separation of Concerns
http://devig.com/separation-of-concerns/
Encapsulation
http://devig.com/encapsulation/

Dependency Inversion Principle
http://devig.com/dependency-inversion-principle/
Explicit Dependencies Principle
http://devig.com/explicit-dependencies-principle/
Don’t Repeat Yourself
http://devig.com/don-t-repeat-yourself/
Persistence Ignorance
http://devig.com/persistence-ignorance/
BoundedContext
https://martinfowler.com/bliki/BoundedContext.html
Domain-Driven Design Fundamentals
http://bit.ly/PS-DDD

13 Chapter 4
Architectural Principles

http://deviq.com/separation-of-concerns/
http://deviq.com/encapsulation/
http://deviq.com/dependency-inversion-principle/
http://deviq.com/explicit-dependencies-principle/
http://deviq.com/don-t-repeat-yourself/
http://deviq.com/persistence-ignorance/
https://martinfowler.com/bliki/BoundedContext.html
http://bit.ly/PS-DDD

SECTION 5

Common Web
Application
Architectures

“If you think good architecture is expensive, try bad architecture.”

Brian Foote and Joseph Yoder

Summary

Most traditional .NET applications are deployed as single units corresponding to an executable or a
single web application running within a single IS appdomain. This is the simplest deployment model
and serves many internal and smaller public applications very well. However, even given this single
unit of deployment, most non-trivial business applications benefit from some logical separation into
several layers.

What is a monolithic application?

A monolithic application is an application that is entirely self-contained, in terms of its behavior. It
may interact with other services or data stores in the course of performing its operations, but the core
of its behavior runs within its own process and the entire application is typically deployed as a single
unit. If such an application needs to scale horizontally, typically the entire application is duplicated
across multiple servers or virtual machines.

All-in-One applications

The smallest possible number of projects for an application architecture is one. In this architecture, the
entire logic of the application is contained in a single project, compiled to a single assembly, and
deployed as a single unit.

A new ASP.NET Core project, whether created in Visual Studio or from the command line, starts out as

a simple “all-in-one” monolith. It contains all of the behavior of the application, including

presentation, business, and data access logic. Figure 5-1 shows the file structure of a single-project

app.

14 Chapter 5
Common Web Application Architectures

Figure 5-1. A single project ASP.NET Core app

VS Solution Structure

NE- §-S P9 2~

) S MeatIVimngte (| pacpect|

3 Cresacted Senever

fas) | Data Access Logic
1 EF Migrations
b dophoteneContenes | | EF DbCantext and rodal desig

G
1!

. ——— Ul Models
L) * Apghoatertion
{sturaraciy + Application Services (interfaces and implementations)
R e
= L --:‘l(\!'
» Powe L
P . Presentation Logic
B Nt o
v my ey
b T sppecttmgeses
LT b o
O sonteerigpes Application Entry Point and Configuration

In a single project scenario, separation by responsibility is achieved through the use of folders. The
default template includes separate folders for MVC pattern responsibilities of Models, Views, and
Controllers, as well as additional folders for Data and Services. In this arrangement, presentation
details should be limited as much as possible to the Views folder, and data access implementation
details should be limited to classes kept in the Data folder. Business logic should reside in services and
classes within the Models folder.

Although simple, the single-project monolithic solution has some disadvantages. As the project’s size
and complexity grows, the number of files and folders will continue to grow as well. Ul concerns
(models, views, controllers) reside in multiple folders, which are not grouped together alphabetically.
This issue only gets worse when additional Ul-level constructs, such as Filters or ModelBinders, are
added in their own folders. Business logic is scattered between the Models and Services folders, and
there is no clear indication of which classes in which folders should depend on which others. This lack
of organization at the project level frequently leads to spaghetti code.

In order to address these issues, applications often evolve into multi-project solutions, where each
project is considered to reside in a particular layer of the application.

What are layers?

As applications grow in complexity, one way to manage that complexity is to break the application up
according to its responsibilities or concerns. This follows the Separation of Concerns principle, and can
help keep a growing codebase organized so that developers can easily find where certain functionality
is implemented. Layered architecture offers a number of advantages beyond just code organization,
though.

15 Chapter 5
Common Web Application Architectures

http://deviq.com/spaghetti-code/

By organizing code into layers, common low-level functionality can be reused throughout the
application. This reuse is beneficial both for the obvious reason that it means less code needs to be
written, but also because it can allow the application to standardize on a single implementation,
following the DRY principle.

With a layered architecture, applications can enforce restrictions on which layers can communicate
with which other layers. This helps to achieve encapsulation. When a layer is changed or replaced, only
those layers that work with it should be impacted. By limiting which layers depend on which other
layers, the impact of changes can be mitigated so that a single change doesn't impact the entire
application.

Layers (and encapsulation) make it much easier to replace functionality within the application. For
example, an application might initially use its own SQL Server database for persistence, but later could
choose to use a cloud-based persistence strategy, or one behind a web API. If the application has
properly encapsulated its persistence implementation within a logical layer, that SQL Server specific
layer could be replaced by a new one implementing the same public interface.

In addition to the potential to swap out implementations in response to future changes in
requirements, application layers can also make it easier to swap out implementations for testing
purposes. Instead of having to write tests that operate against the real data layer or Ul layer of the
application, these layers can be replaced at test time with fake implementations that provide known
responses to requests. This typically makes tests much easier to write and much faster to run when
compared to running tests again the application’s real infrastructure.

Logical layering is a common technique for improving the organization of code in enterprise software
applications, and there are several ways in which code can be organized into layers.

Note: Layers represent logical separation within the application. In the event that application logic is
physically distributed to separate servers or processes, these separate physical deployment targets are
referred to as tiers. It's possible, and quite common, to have an N-Layer application that is deployed
to a single tier.

16 Chapter 5
Common Web Application Architectures

Traditional “N-Layer” architecture applications

The most common organization of application logic into layers it shown in Figure 5-2.

Figure 5-2. Typical application layers.

Application Layers

User Interface

Data Access

These layers are frequently abbreviated as Ul, BLL (Business Logic Layer), and DAL (Data Access Layer).
Using this architecture, users make requests through the Ul layer, which interacts only with the BLL.
The BLL, in turn, can call the DAL for data access requests. The Ul layer should not make any requests
to the DAL directly, nor should it interact with persistence directly through other means. Likewise, the
BLL should only interact with persistence by going through the DAL. In this way, each layer has its own
well-known responsibility.

One disadvantage of this traditional layering approach is that compile-time dependencies run from
the top to the bottom. That is, the Ul layer depends on the BLL, which depends on the DAL. This
means that the BLL, which usually holds the most important logic in the application, is dependent on
data access implementation details (and often on the existence of a database). Testing business logic
in such an architecture is often difficult, requiring a test database. The Dependency Inversion Principle
can be used to address this issue, as you'll see in the next section.

17 Chapter 5
Common Web Application Architectures

Figure 5-3 shows an example solution, breaking the application into three projects by responsibility
(or layer).

Figure 5-3. A simple monolithic application with three projects.

VS Solution Structure

4 i

b ¥ dppkoaiarCan -— Business/Application Model

4 N Wrmtiuoe —
b +8 Dperdurces Data Access Loglc (Infrastructure)
P W Mypmers - | = EF Migrations

P+ o Cmlaglantaa or |
B oeor ComeploctentSontin
o) Wet
3 Connectnd lerwom

EF DECantsst and model design

4 VwaMcdeh - - Presentation Logic

" S a d Tests

Although this application uses several projects for organizational purposes, it is still deployed as a
single unit and its clients will interact with it as a single web app. This allows for very simple
deployment process. Figure 5-4 shows how such an app might be hosted using Windows Azure.

18 Chapter 5
Common Web Application Architectures

Figure 5-4. TODO

Azure Web App
TODOQO: Show Azure Web App Deployment

Internally, this project’s organization into multiple projects based on responsibility improves the
maintainability of the application.

This unit can be scaled up or out to take advantage of cloud-based on-demand scalability.

TODO: Show an example of how to use Azure to scale an application deployed as a Web App.

19 Chapter 5
Common Web Application Architectures

Clean architecture

Applications that follow the Dependency Inversion Principle as well as Domain-Driven Design (DDD)
principles tend to arrive at a similar architecture. This architecture has gone by many names over the
years. One of the first names was Hexagonal Architecture, followed by Ports-and-Adapters. More
recently, it's been cited as the Onion Architecture or Clean Architecture. It is this last name, Clean
Architecture, that we are using as the basis for describing the architecture in this eBook.

Note: The Clean Architecture can be applied to applications that are built using DDD Principles as well
as to those that are not built using Domain-Driven Design. In the case of the former, this combination
may be referred to as “Clean DDD".

Clean architecture puts the business logic and application model at the center of the application.
Instead of having business logic depend on data access or other infrastructure concerns, this
dependency is inverted: infrastructure and implementation details depend on the Application Core.
This is achieved by defining abstractions — interfaces — in the Application Core, which are then
implemented by types defined in the Infrastructure layer. A common way of visualizing this
architecture is to use a series of concentric circles, similar to an onion. Figure 5-X shows an example of
this style of architectural representation.

Figure 5-X. Clean Architecture; onion view
TODO: Insert circular “onion” architecture diagram.

In this diagram, dependencies flow toward the center. Thus, you can see that the Application Core
(which takes its name from its position at the core of this diagram) has no dependencies on other
application layers. This view still doesn't offer a perfect visualization, though, since it implies that the
Ul layer must call through the Infrastructure (or Tests) layer in order to reach the Core layer. Figure 5-X
shows a more traditional horizontal layer diagram that better reflects the dependency between the Ul
and other layers.

20 Chapter 5
Common Web Application Architectures

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

Figure 5-X. Clean Architecture; horizontal layer view

Clean Architecture Layers

User Interface

Application Core

Note that the thick, dark arrows represent compile-time dependencies, while the lighter gray arrow
represents a runtime dependency. Using the clean architecture, the Ul layer works with interfaces
defined in the Application Core at compile time, and ideally should not have any knowledge of the
implementation types defined in the Infrastructure layer. At runtime, however, these implementation
types will be required for the app to execute, so they will need to be present and wired up to the
Application Core interfaces via dependency injection.

Because the Application Core doesn't depend on Infrastructure, it is very easy to write automated unit
tests for this layer. Since the Ul layer doesn’t have any direct dependency on types defined in the
Infrastructure project, it is likewise very easy to swap out implementations, either to facilitate testing
or in response to changing application requirements. ASP.NET Core’s built-in use of and support for
dependency injection makes this architecture the most appropriate way to structure non-trivial
monolithic applications.

Organizing Code in the Clean Architecture

In a Clean Architecture solution, each project has clear responsibilities. As such, certain types will
belong in each project (and frequently you'll find folders corresponding to these types in the
appropriate project).

The Application Core holds the business model, which includes entities, services, and interfaces. These
interfaces include abstractions for operations that will be performed using Infrastructure, such as data
access, file system access, network calls, etc. Sometimes services or interfaces defined at this layer will
need to work with non-entity types that have no dependencies on Ul or Infrastructure. These can be
defined as simple Data Transfer Objects (DTOs).

Application Core Types

e Entities (business model classes that are persisted)

21 Chapter 5
Common Web Application Architectures

e Interfaces
e Services
e DTOs

The Infrastructure project will typically include data access implementations. In a typical ASP.NET Core
web application, this will include the Entity Framework DbContext, any EF Core Migrations that have
been defined, and data access implementation classes. The most common way to abstract data access
implementation code is through the use of the Repository design pattern.

In addition to data access implementations, the Infrastructure project should contain implementations
of services that must interact with infrastructure concerns. These services should implement interfaces
defined in the Application Core, and so Infrastructure should have a reference to the Application Core
project.

Infrastructure Types

e EF Core types (DbContext, Migrations)
e Data access implementation types (Repositories)
e Infrastructure-specific services (FileLogger, SmtpNotifier, etc.)

The user interface layer in an ASP.NET Core MVC application will be the entry point for the
application, and will be an ASP.NET Core MVC project. This project should reference the Application
Core project, and its types should interact with infrastructure strictly through interfaces defined in
Application Core. No direct instantiation of (or static calls to) Infrastructure layer types should be
permitted in the Ul layer.

Ul Layer Types

e Controllers

e Filters

e Views

e ViewModels
e Startup

The Startup class is responsible for configuring the application, and for wiring up implementation
types to interfaces, allowing dependency injection to work properly at run time.

Note: In order to wire up dependency injection in ConfigureServices in the Startup.cs file of the Ul
project, the project may need to reference the Infrastructure project. This dependency can be
eliminated, most easily by using a custom DI container. For the purposes of this sample, the simplest
approach is to allow the Ul project to reference the Infrastructure project.

Monolithic applications and Containers

You can build a single and monolithic-deployment based Web Application or Service and deploy it as
a container. Within the application, it might not be monolithic but organized into several libraries,
components or layers. Externally it is a single container like a single process, single web application or
single service.

22 Chapter 5
Common Web Application Architectures

http://deviq.com/repository-pattern/

To manage this model, you deploy a single container to represent the application. To scale, just add a
few more copies with a load balancer in front. The simplicity comes from managing a single
deployment in a single container or VM.

Monolithic Containerized application

App 1 =1 Container A monolithic application has

most of its functionality within
n a single process/container that
is componentized with internal
C layers or libraries.
Host 1
(Server/VM) ‘EI

Host 2 Scales out by cloning
(Server/VM) the app/container on
multiple servers/VMs
Host 3
(Server/VM)

Need to deploy Coarse-grained
the full density of
application applications

Figure 5-X. Monolithic application architecture example
You can include multiple components/libraries or internal layers within each container, as illustrated in
Figure 5-X. But, following the container principal of “a container does one thing, and does it in one
process”, the monolithic pattern might be a conflict.

The downside of this approach comes if/when the application grows, requiring it to scale. If the entire
application scaled, it's not really a problem. However, in most cases, a few parts of the application are
the choke points requiring scaling, while other components are used less.

Using the typical eCommerce example; what you likely need to scale is the product information
component. Many more customers browse products than purchase them. More customers use their
basket than use the payment pipeline. Fewer customers add comments or view their purchase history.
And you likely only have a handful of employees, in a single region, that need to manage the content
and marketing campaigns. By scaling the monolithic design, all the code is deployed multiple times.

In addition to the scale everything problem, changes to a single component require complete
retesting of the entire application, and a complete redeployment of all the instances.

The monolithic approach is common, and many organizations are developing with this architectural
approach. Many are having good enough results, while others are hitting limits. Many designed their
applications in this model, because the tools and infrastructure were too difficult to build service
oriented architectures (SOA), and they didn't see the need - until the app grew. If you find you're

23 Chapter 5
Common Web Application Architectures

hitting the limits of the monolithic approach, breaking the app up to enable it to better leverage
containers and microservices may be the next logical step.

Deploying monolithic applications in Microsoft Azure can be achieved using dedicated VMs for each
instance. Using Azure VM Scale Sets, you can easily scale the VMs. Azure App Services can run
monolithic applications and easily scale instances without having to manage the VMs. Since 2016,
Azure App Services can run single instances of Docker containers as well, simplifying the deployment.
And using Docker, you can deploy a single VM as a Docker host, and run multiple instances. Using the
Azure balancer, as shown in the Figure 5-X, you can manage scaling.

Host 1 (VM)
-
Browser or Host 2 (VM)
o O A=

Host 3 (VM)
@ 0 or iR

Figure 5-X. Multiple hosts scaling-out a single Docker application

The deployment to the various hosts can be managed with traditional deployment techniques. The

Docker hosts can be managed with commands like docker run performed manually, or through
automation such as Continuous Delivery (CD) pipelines.

Monolithic application deployed as a container

There are benefits of using containers to manage monolithic application deployments. Scaling the
instances of containers is far faster and easier than deploying additional VMs. Even when using VM
Scale Sets to scale VMs, they take time to instance. When deployed as app instances, the
configuration of the app is managed as part of the VM.

Deploying updates as Docker images is far faster and network efficient. Docker Images typically start
in seconds, speeding rollouts. Tearing down a Docker instance is as easy as issuing a docker stop
command, typically completing in less than a second.

As containers are inherently immutable by design, you never need to worry about corrupted VMs,
whereas update scripts might forget to account for some specific configuration or file left on disk.

24 Chapter 5
Common Web Application Architectures

https://azure.microsoft.com/en-us/documentation/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/services/app-service/

While monolithic apps can benefit from Docker, breaking up the monolithic application into sub
systems which can be scaled, developed and deployed individually may be your entry point into the
realm of microservices.

References - Common Web Architectures

Creating N-Tier Applications in C#
https://www.pluralsight.com/courses/n-tier-apps-part1

The Clean Architecture
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
The Onion Architecture
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

The Repository Pattern

http://devig.com/repository-pattern/

Architecting Microservices eBook

[TODO URL]

25 Chapter 5
Common Web Application Architectures

https://www.pluralsight.com/courses/n-tier-apps-part1
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://deviq.com/repository-pattern/

SECTION 6

ommon Client
ide Web
echnologies

“Websites should look good from the inside and out.”

Paul Cookson

Summary

ASP.NET Core applications are web applications, and as such they rely on client-side web technologies
like HTML, CSS, and JavaScript. By separating the content of the page (the HTML) from its layout and
styling (the CSS), and its behavior (via JavaScript), complex web apps can leverage the Separation of
Concerns principle. Future changes to the structure, design, or behavior of the application can be
made more easily when these concerns are not intertwined.

While HTML and CSS are relatively stable, JavaScript, by means of the application frameworks and
utilities developers work with to build web-based applications, is evolving at breakneck speed. This
chapter reviews a few ways JavaScript is used by web developers as part of developing applications, as
provides a high-level overview of the Angular and React client side libraries.

HTML

HTML (HyperText Markup Language) is the standard markup language used to create web pages and
web applications. Its elements form the building blocks of pages, representing formatted text, images,
form inputs, and other structures. When a browser makes a request to a URL, whether fetching a page
or an application, the first thing that is returned is an HTML document. This HTML document may
reference or include additional information about its look and layout in the form of CSS, or behavior
in the form of JavaScript.

26 Chapter 6
Common Client Side Web Technologies

CSS

CSS (Cascading Style Sheets) is used to control the look and layout of HTML elements. CSS styles can
be applied directly to an HTML element, defined separately on the same page, or defined in a
separate file and referenced by the page. Styles cascade based on how they are used to select a given
HTML element. For instance, a style might apply to an entire document, but would be overridden by a
style that applied to a particular element. Likewise, an element-specific style would be overridden by a
style that applied to a CSS class that was applied to the element, which in turn would be overridden
by a style targeting a specific instance of that element (via its id). Figure 7-X

Figure 7-X. CSS Specificity rules, in order.

CSS Specificity

« Least specific; applies most broadly

« Applies to all elements the CSS class as been applied to
« Elements can have multiple classes applied to them

« References a unique HTML element via its ID

« Most specific
+ Added to HTML element directly

* Atinbute ang paeudo-cless selectons sso apply ot this level

It's best to keep styles in their own separate stylesheet files, and to use selection-based cascading to
implement consistent and reusable styles within the application. Placing style rules within HTML
should be avoided, and applying styles to specific individual elements (rather than whole classes of
elements, or elements that have had a particular CSS class applied to them) should be the exception,
not the rule.

CSS Preprocessors

CSS stylesheets lack support for conditional logic, variables, and other programming language
features. Thus, large stylesheets often include a lot of repetition, as the same color, font, or other
setting is applied to many different variations of HTML elements and CSS classes. CSS preprocessors
can help your stylesheets follow the DRY principle by adding support for variables and logic.

The most popular CSS preprocessors are Sass and LESS. Both extend CSS and are backward
compatible with it, meaning that a plain CSS file is a valid Sass or LESS file. Sass is Ruby-based and
LESS is JavaScript based, and both typically run as part of your local development process. Both have
command line tools available, as well as built-in support in Visual Studio for running them using Gulp
or Grunt tasks.

27 Chapter 6
Common Client Side Web Technologies

http://deviq.com/don-t-repeat-yourself/

JavaScript

JavaScript is a dynamic, interpreted programming language that has been standardized in the
ECMAScript language specification. It is the programming language of the web. Like CSS, JavaScript
can be defined as attributes within HTML elements, as blocks of script within a page, or in separate
files. And like CSS, it's generally recommended to organize JavaScript into separate files, keeping it
separated as much as possible from the HTML found on individual web pages or application views.

When working with JavaScript in your web application, there are a few tasks that you'll commonly
need to perform:

e Selecting an HTML element and retrieving and/or updating its value

e Querying a Web API for data

e Sending a command to a Web API (and responding to a callback with its result)
e Performing validation

You can perform all of these tasks with JavaScript alone, but many libraries exist to make these tasks
easier. One of the first and most successful of these libraries is jQuery, which continues to be a
popular choice for simplifying these tasks on web pages. For Single Page Applications (SPAs), jQuery
doesn’t provide many of the desired features that Angular and React offer.

Legacy Web Apps with jQuery

Although ancient by JavaScript framework standards, jQuery continues to be a very commonly used
library for working with HTML/CSS and building applications that make AJAX calls to web APlIs.

Show imperative code model vs. declarative with SPAs below (and support for routing, binding, etc.)

jQuery vs a SPA Framework

Factor jQuery SPA Framework
Abstracts the DOM Yes Yes
Animation Support Yes Yes
AJAX Support Yes Yes
Declarative Data Binding No Yes
MVC-style Routing No Yes
Templating No Yes
Deep-Link Routing No Yes

Most of the features jQuery lacks intrinsically can be added with the addition of other libraries.
However, a SPA framework will provide these features in a more integrated fashion, since it's been
designed with all of them in mind from the start. Also, jQuery is a very imperative library, meaning
that you need to call jQuery functions in order to do anything with jQuery. Much of the work and
functionality that SPA frameworks provide can be done declaratively, requiring no actual code to be
written.

28 Chapter 6
Common Client Side Web Technologies

Data binding is a great example of this. In jQuery, it usually only takes one line of code to get the
value of a DOM element, or to set an element’s value. However, you have to write this code any time
you need to change the value of the element, and sometimes this will occur in multiple places or
event handlers on a page. Another common example is element visibility. In jQuery, there might be
many different places where you would write code to control whether certain elements were visible. In
each of these cases, when using data binding, no code would need to be written.

Angular 2 SPAs

Reference SPA sample in eShopOnContainers which uses Angular 2 and TypeScript.

Show a short summary of the structure of the application when using Angular 2.
https.//github.com/dotnet/eShopOnContainers/tree/master/src/Web/WebSPA

ReactJS SPAs

Provide an overview of ReactJS as a SPA framework. Show the structure of a React SPA
application.

Choosing a SPA Framework

Show considerations and a decision table.

References - Client Web Technologies

HTML and CSS

https://www.w3.org/standards/webdesign/htmlcss

Sass vs. LESS

https://www.keycdn.com/blog/sass-vs-less/

Styling ASP.NET Core Apps with LESS, Sass, and Font Awesome
https://docs.microsoft.com/en-us/aspnet/core/client-side/less-sass-fa
Client-Side Development in ASP.NET Core
https://docs.microsoft.com/en-us/aspnet/core/client-side/

jQuery

https://jquery.com/

jQuery vs AngularJS
https://www.airpair.com/angularjs/posts/jquery-angularjs-comparison-migration-walkthrough
Angular 2

https://angular.io/

ReactJS

https://facebook.github.io/react/

29 Chapter 6
Common Client Side Web Technologies

https://github.com/dotnet/eShopOnContainers/tree/master/src/Web/WebSPA
https://www.w3.org/standards/webdesign/htmlcss
https://docs.microsoft.com/en-us/aspnet/core/client-side/less-sass-fa
https://docs.microsoft.com/en-us/aspnet/core/client-side/

SECTION ;

Developing
ASP.NET Core
MVC Apps

“It's not important to get it right the first time. It's vitally important to get it right the
last time.”

Andrew Hunt and David Thomas

Summary

TBD

Mapping Requests to Responses

TBD

Working with Dependencies

TBD

Structuring the Application

TBD

Security

TBD

30 Chapter 7
Developing ASP.NET Core MVC Apps

Client Communication

TBD - Discuss SignalR.

Domain-Driven Design — Should You Apply It?

TBD

Deployment

TBD

References - Client Web Technologies

Title

https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-cloud/

31 Chapter 7
Developing ASP.NET Core MVC Apps

SECTION 8

Working with
Data in ASP.NET
Core Apps

“Data is a precious thing and will last longer than the systems themselves.”

Tim Berners-Lee

Summary

TBD

SQL or NoSQL

TBD

Entity Framework Core (for relational databases)
TBD

EF or micro-ORM?

TBD

Azure DocDB

TBD

Chapter 8

Other Persistence Options

TBD

33 Chapter 8
Working with Data

SECTION 9

Testing ASP.NET
Core MVC Apps

“If you don't like unit testing your product, most likely your customers won't like to
test it, either.”

Anonymous

Summary

TBD

Kinds of Automated Tests

TBD

Unit Tests
TBD

Integration Tests
TBD

Functional Tests
TBD

Unit Testing ASP.NET Core Apps

TBD

Integration and Functional Tests

TBD

34 Chapter 9

35

Chapter 9
Testing

SECTION /‘ O

evelopment
rocess for Azure-
osted ASP.NET

ore applications

“With the cloud, individuals and small businesses can snap their fingers and
instantly set up enterprise-class services.”

Roy Stephan
Vision

Develop well-designed ASP .NET applications the way you like, using Visual Studio or the dotnet CLI and
Visual Studio Code or your editor of choice.

Development environment for ASP.NET Core apps

Development tools choices: IDE or editor

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has you
covered when developing Docker applications.

Visual Studio with Docker Tools. If you're using Visual Studio 2015 you can install the add-in tools
"Docker Tools for Visual Studio”. If you're using Visual Studio 2017, Docker Tools are already installed.
In either case you can develop, run and validate your applications directly in the target Docker
environment. F5 your application (single container or multiple containers) directly into a Docker host
with debugging, or CTRL + F5 to edit & refresh your app without having to rebuild the container. This
is the simplest and most powerful choice for Windows developers targeting Docker containers for
Linux or Windows.

Download Docker Tools for Visual Studio

36 Chapter 10

https://visualstudiogallery.msdn.microsoft.com/0f5b2caa-ea00-41c8-b8a2-058c7da0b3e4

Download Docker for Mac and Windows

Visual Studio Code and Docker CLI (Cross-Platform Tools for Mac, Linux and Windows). If you prefer
a lightweight and cross-platform editor supporting any development language, you can use Microsoft
Visual Studio Code and Docker CLI. These products provide a simple yet robust experience that
streamlines the developer workflow. By installing either the "Docker for Mac” or “Docker for Windows"
development environment, Docker developers can use a single Docker CLI to build apps for both
Windows and Linux. Additionally, Visual Studio Code supports extensions for Docker such as
intellisense for Dockerfiles and shortcut-tasks to run Docker commands from the editor.

Download Visual Studio Code

Download Docker for Mac and Windows

.NET languages and frameworks for ASP.NET Core

As introduced in initial sections, you can use .NET Framework, .NET Core, or the OSS project Mono
when developing ASP.NET Core applications. You can develop in C#, F# or Visual Basic on Windows,
Mac, or Linux systems, depending on the chosen framework.

Development workflow for Azure-hosted ASP.NET
Core apps

The application development lifecycle starts from each developer’s machine, coding the app using
their preferred language and testing it locally. Developers may choose their preferred source control
system and can configure Continuous Integration (Cl) and/or Continuous Deployment (CD) using a
build server or based on built-in Azure features.

The inner-loop development workflow that utilizes Azure can use the following process. Note that the
initial steps to set up the environment are not included, as that has to be done only once.

Workflow for developing Azure-hosted ASP.NET Core applications
TBD

The following are the basic steps you usually take when building an ASP.NET Core app, hosted in
Azure, as illustrated in Figure X-XX.

37 Chapter 10
Development Process for Azure

http://www.docker.com/products/docker
http://www.docker.com/products/docker
https://code.visualstudio.com/download
http://www.docker.com/products/docker
http://www.docker.com/products/docker

Inner-Loop development workflow for Docker apps

Run
Containers /
Compose app

1. 2. 3. e 5

Write Create Images fices

Dockerfile/s defined at
Dockerfile/s

w |
mages

docker build

Code Test

your app your app or

microservices

http
access-

docker run /
Docker-compose wp

=] il =

N ey |
Remote U Loced o
Docker Regezry Docker
tie Docksr Hubl Repan

git push

Figure X-XX. Step-by-step workflow developing Docker containerized apps
In this guide, this whole process is detailed and every critical step is explained.

When using a CLI+Editor development approach like using just Visual Studio Code plus Docker CLI,
you need to know every step. If using Visual Studio Code and Docker CLI, check the eBook
Containerized Docker Application lifecycle with Microsoft Platforms and Tools for explicit non-Visual
Studio details.

When using Visual Studio 2015 or 2017, many of those steps are transparent so it dramatically
improves your productivity. This is especially true when using Visual Studio 2017 (because...).

However, making those steps transparent doesn’t mean that you don't need to know what'’s going on
underneath with dotnet and Azure. Therefore, every step is detailed in the following step-by-step
guidance.

Visual Studio simplifies that workflow to “the minimum” as explained in the next sections.

Step 1. Start coding and create your initial app/service baseline

The way you develop your application is similar to the way you would do it without Docker. The
difference is that while developing for Docker, you are deploying and testing your application or
services running within Docker containers placed in your local environment (either a Linux VM or
Windows).

Update to show installation of Azure development SDK and tools.
Setup of your local environment

With the latest version of Docker for Windows, it is easier than ever to develop Docker applications.
The setup is straightforward, as explained in the following reference.

38 Chapter 10
Development Process for Azure

http://aka.ms/dockerlifecycleebook/

Installing Docker for Windows: https://docs.docker.com/docker-for-windows/

In addition, you'll need Visual Studio 2015 with the tools for Docker, or Visual Studio 2017 which
includes the tooling for Docker if you selected the “.NET Core and Docker” workload during
installation, as shown in Figure x-x.

Inghvidual components Language pachy

0 acalnost mpbexrom

O e e el deveboprrmert XL NET Cime sewd Dother Pravew
wate O%is anz Sharedmrt ada-em REH fasc AMPNET Care appicmacs maseg
aies ¥ T » 0 a5 { TN el M W) Dok

Figure X-X. Selecting the Docker and .NET Core workload

Visual Studio 2017

https://www.visualstudio.com/vs/visual-studio-2017-rc/

Visual Studio Tools for Docker:

http://aka.ms/vstoolsfordocker

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/visual-studio-tools-for-docker

Working with .NET and Visual Studio

You can start coding your app in .NET (usually in .NET Core if you are planning to use containers) even
before enabling Docker in your app and deploying/testing in Docker. However, it's recommended that
you start working on Docker as soon as possible, as that will be the real environment and any issues
can be discovered as soon as possible. This is very much encouraged because Visual Studio makes it
so easy to work with Docker that it almost feels transparent, even with debugging support with multi-
container applications.

2.
ol\xvf:iﬁ Step 2. Create a dockerfile related to an existing .NET base image

e

Replace with package/publish options for Azure.

References - Base Docker images

Building Docker Images for .NET Core Applications

https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images

39 Chapter 10
Development Process for Azure

https://docs.docker.com/docker-for-windows/
https://www.visualstudio.com/vs/visual-studio-2017-rc/
https://docs.microsoft.com/en-us/dotnet/articles/core/docker/visual-studio-tools-for-docker
https://docs.microsoft.com/en-us/dotnet/articles/core/docker/building-net-docker-images

Build your own images
https://docs.docker.com/engine/tutorials/dockerimages/

40

Step 3. Create your custom Docker images embedding your service in it

Chapter 10
Development Process for Azure

https://docs.docker.com/engine/tutorials/dockerimages/

Step 4.Define your services in docker-compose.yml when building a
multi-container Docker app with multiple services

TBD.

Step 5. Build and run your Docker app

Run the app.
Running and debugging a multi-container application with Visual Studio

Again, when using Visual Studio 2017 it cannot get simpler and you are not only running the multi-
container application but being able to debug all of its containers at once.

As mentioned before, each time you add "Docker Solution Support” to a specific project within a
solution, you will get that project configured in the global/solution docker-compose.yml, so you will
be able to run or debug the whole solution at once because Visual Studio will spin up a container per
project that has Docker solution Support enabled while creating all the internal steps for you (dotnet
publish, docker build to build the Docker images, etc.).

The important point here is that, as Test Analyze Window Help

shown in figure 5-26, in Visual FrontEndWebSiteASPNETCore ~ P Docker * [?' Docker: Debug Solution *
Studio 2017 you have an additional P Docker: Debug Solution

F5 button that we have added so B Docker Start Salution

you can run or debug a whole -

. . . @y Docker: Build Solution
multiple container application by

running all the containers that are
defined in the docker-compose.yml
file at the solution level that was modified by Visual Studio while adding “Docker Solution Support” to
each of your projects. This means that you could set several breakpoints up, each breakpoint in a
different project/container and while debugging from Visual Studio you will be stopping in
breakpoints defined in different projects and running on different containers.

&y Docker: Clean Solution

Figure X-XX. Running multi-container apps in Visual Studio 2017

For further details on the services implementation and deployment to a Docker host, read the
following articles.

Deploy an ASP.NET container to a remote Docker host:
https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/

IMPORTANT NOTE: "docker-compose up” and “docker run” (or running/debugging the containers
from Visual Studio which is under the covers using the same techniques) might be enough for testing
your containers in your development environment, but might not be used at all if you are targeting
Docker clusters and orchestrators like Docker Swarm, Mesosphere DC/OS or Kubernetes, in order

41 Chapter 10
Development Process for Azure

https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-hosting-web-apps-in-docker/

to be able to scale-up. If using a cluster, like Docker Swarm mode (available in Docker for Windows
and Mac since version 1.12), you need to deploy and test with additional commands like “docker
service create” for single services or when deploying an app composed by several containers, using
"docker compose bundle" and "docker deploy myBundleFile", by deploying the composed app as a
"stack" as explained in the article Distributed Application Bundles, from Docker.

For DC/OS and Kubernetes you would use different deployment commands and scripts, as well.

Step 6. Test your Docker application (locally, in your local CD VM)

This step will vary depending on what is your app doing.

In a very simple .NET Core Web API hello world deployed as a single container/service, you'd just need
to access the service by providing the TCP port specified in the dockerfile, as in the following simple
example.

Testing and Debugging containers with Visual Studio

As mentioned, when running/debugging the containers with Visual Studio you'll be able to debug the
.NET application running on containers in a similar way than you could do when running on the plain
Os.

For further details on how to debug containers, read the following articles.

Build, Debug, Update and Refresh apps in a local Docker container:
https://azure.microsoft.com/en-us/documentation/articles/vs-azure-tools-docker-edit-and-refresh/

42 Chapter 10
Development Process for Azure

https://docs.docker.com/engine/swarm/
https://blog.docker.com/2016/06/docker-app-bundle/
https://mesosphere.com/blog/2015/09/02/dcos-cli-command-line-tool-datacenter/
http://kubernetes.io/docs/user-guide/deployments/

Simplified workflow when developing containers with Visual Studio

Effectively, the workflow when using Visual Studio is a lot simpler than a regular Docker container
development process because most of the steps required by Docker related to dockerfile and docker-
compose.yml are hidden or simplified by Visual Studio, as shown in the image X-XX.

VS development workflow for Docker apps

1. 2. {Once)
Add Docker

Run/Debug

Conta

Code
Compose app

your app support to

projects a
=

'ﬂothu- run /
lucker-corpose up

(=T

Dacker Rogstry Docker
i1e. Docker Hub) Repos

git push

Figure X-XX. Simplified workflow when developing with Visual Studio

Even further, the step number 2, “Add Docker support to your projects” needs to be done just once.
So usually that process or workflow remains pretty similar to your usual development tasks when
using plain .NET. However, you still need to know what's going on under the covers (images build
process, what base images you are using, deployment of containers, etc.) and sometimes you will also
need to edit the dockerfile or docker-compose.ym! when customizing the behaviors. But, for the most
part of the work, it'll be greatly simplified by Visual Studio, making you a lot more productive.

43 Chapter 10
Development Process for Azure

SECTION /‘ /‘

Azure Hosting
Recommendations
for ASP.NET Core
Web Apps

“Line-of-business leaders everywhere are bypassing IT departments to get
applications from the cloud (aka SaaS) and paying for them like they would a
magazine subscription. And when the service is no longer required, they can cancel
the subscription with no equipment left unused in the corner.”

Daryl Plummer, Gartner analyst

Summary

Whatever your application’s needs and architecture, Windows Azure can support it. Your hosting
needs can be me

Web Applications

TBD — Azure Web App, container, VM

APIs

TBD — Azure Functions, microservices/container, Azure Web App

44 Chapter 11
Azure Hosting Recommendations

Logical Processes

TBD — Azure Functions

Data

TBD — Windows Azure SQL Database, Azure DocumentDB, Azure Storage, Redis, ,

Chapter 11

45
Azure Hosting Recommendations

Key takeaways

e TBD

46

Chapter 11
Azure Hosting Recommendations

