- & Microsoft

Architecting Modern
Web Applications with

ASP.NE

Core and

Microsoft Azure

Steve “ardalis” Smith

EDITION v3.1 - Updated to ASP.NET Core 3.1

PUBLISHED BY

Microsoft Developer Division, .NET, and Visual Studio product teams
A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2020 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions, and
information expressed in this book, including URL and other Internet website references, may change
without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association
or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are
trademarks of the Microsoft group of companies.

Mac and macOS are trademarks of Apple Inc.

The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.
All other marks and logos are property of their respective owners.

Author:

Steve “ardalis” Smith - Software Architect and Trainer - Ardalis.com

Editors:

Maira Wenzel

Action links

. This e-book is also available in a PDF format (English version only) Download

. Clone/Fork the reference application eShopOnWeb on GitHub

Introduction

.NET Core and ASP.NET Core offer several advantages over traditional .NET development. You should
use .NET Core for your server applications if some or all of the following are important to your
application’s success:

. Cross-platform support.

. Use of microservices.

https://www.microsoft.com/
https://ardalis.com/
https://aka.ms/webappebook
https://github.com/dotnet-architecture/eShopOnWeb

. Use of Docker containers.
. High performance and scalability requirements.
. Side-by-side versioning of .NET versions by application on the same server.

Traditional .NET applications can and do support many of these requirements, but ASP.NET Core and
.NET Core have been optimized to offer improved support for the above scenarios.

More and more organizations are choosing to host their web applications in the cloud using services
like Microsoft Azure. You should consider hosting your application in the cloud if the following are
important to your application or organization:

. Reduced investment in data center costs (hardware, software, space, utilities, server
management, etc.)

. Flexible pricing (pay based on usage, not for idle capacity).

. Extreme reliability.

. Improved app mobility; easily change where and how your app is deployed.
. Flexible capacity; scale up or down based on actual needs.

Building web applications with ASP.NET Core, hosted in Azure, offers many competitive advantages
over traditional alternatives. ASP.NET Core is optimized for modern web application development
practices and cloud hosting scenarios. In this guide, you'll learn how to architect your ASP.NET Core
applications to best take advantage of these capabilities.

Version

This guide has been revised to cover .NET Core 3.1 version along with many additional updates
related to the same “wave” of technologies (that is, Azure and additional third-party technologies)
coinciding in time with the .NET Core 3.1 release. That's why the book version has also been updated
to version 3.1.

Purpose

This guide provides end-to-end guidance on building monolithic web applications using ASP.NET
Core and Azure. In this context, “monolithic” refers to the fact that these applications are deployed as
a single unit, not as a collection of interacting services and applications.

This guide is complementary to ".NET Microservices. Architecture for Containerized .NET Applications”,
which focuses more on Docker, microservices, and deployment of containers to host enterprise

applications.
.NET Microservices. Architecture for Containerized .NET Applications

. e-book
https://aka.ms/MicroservicesEbook

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://aka.ms/MicroservicesEbook

. Sample Application
https://aka.ms/microservicesarchitecture

Who should use this guide

The audience for this guide is mainly developers, development leads, and architects who are
interested in building modern web applications using Microsoft technologies and services in the
cloud.

A secondary audience is technical decision makers who are already familiar ASP.NET or Azure and are
looking for information on whether it makes sense to upgrade to ASP.NET Core for new or existing
projects.

How you can use this guide

This guide has been condensed into a relatively small document that focuses on building web
applications with modern .NET technologies and Azure. As such, it can be read in its entirety to
provide a foundation of understanding such applications and their technical considerations. The
guide, along with its sample application, can also serve as a starting point or reference. Use the
associated sample application as a template for your own applications, or to see how you might
organize your application’s component parts. Refer back to the guide’s principles and coverage of
architecture and technology options and decision considerations when you're weighing these choices
for your own application.

Feel free to forward this guide to your team to help ensure a common understanding of these
considerations and opportunities. Having everybody working from a common set of terminology and
underlying principles helps ensure consistent application of architectural patterns and practices.

References

. Choosing between .NET Core and .NET Framework for server apps
https://docs.microsoft.com/dotnet/standard/choosing-core-framework-server

https://aka.ms/microservicesarchitecture
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server

Contents

Cross platform

Blazor

Blazor

Decision table

Characteristics of Modern Web Applications 1
Reference application: eShopOnWeb 1
Reference Application 2
Cloud-hoSted @Nd SCAIANIE ...ttt ettt e et 2
........... 2

Modular aNd 100SEIY COUPIEU ...ttt sttt ss s ss sttt st 3
Easily tested with automated tests .3
Traditional and SPA behaviors supported 3
Simple development and deployment 4
Traditional ASP.NET and Web Forms 4
4

References — Modern Web APPIICALIONSc.ciciieeiieeiieeiieesisesesssseessssesssessssesssssssesssesssssssssnessssnees 4
Choose Between Traditional Web Apps and Single Page Apps (SPAs) 6
7

When to choose traditional web apps 7
When to choose SPAs 8
RETEIrENCES — SPA FrAMEWOIKSoovvverceireeiimeeeemeeaiseesisee s ssssssessssse st st ssssssessssse st sssssse s ssssesssssssssnacs 8
WHEN 10 ChOOSE BIAZOT ..ottt e 9
.. 9

Architectural principles 10
COMMON AESIGN PIINCIPIES «..oooreeriieceieeeieceeee et ss st bbb b 10
Separation of concerns 10
ENCAPSUIBLION oottt ettt 10
Dependency inversion 11
Explicit dependencies 12
Single responsibility 13
DON't rePEAL YOUISEI (DRY) ..ot ssss st st sssnssssssssnnss 13
Persistence ignorance 13

Contents

BOUNAEA CONTEXES ...ttt sttt sttt sttt et s b s et s esas st assssassanas 14

AAAITIONA] FESOUITESooreereerreee et ee et sssse sttt s bbb b st ssens 14
Common web application architectures 15
What is @ MONOITNIC @PPICAIONT ...ttt sttt sttt s bbb sntens 15
All-IN-0NE APPHCALIONS ..ottt b bbb bbb bbb bbb b nntsnes 15
WAL @IE [QYEIS? ..ottt etttk ekttt s st s 16
Traditional “N-Layer” architecture appliCatioNnsS ...t sssss s s sssssssssssssssssssnees 17
ClEAN AICNITECEUIE ..ottt sttt 21
Organizing code in Clean ArChItECIUIE ...t s esesse st ssessesies 26
ADPPIICALION COTE LY PES .ottt ettt bbb ekt 26
INFTASTIUCTUIE TYPES oottt s bbb bbb 27

UL TAYEI TYPES w.oooreeerieeriee it sesse st st ssss st s ss st s s sb £ 8k n s s 27
Monolithic applications aNd CONTAINEIS........covrrirrirrrirreete st ss sttt sssssssssss s sssssnsssnens 27
Monolithic application deployed as @ CONTAINET ...t sssssssssssssssssnees 29
DIOCKET SUPPOI oottt sttt ettt s bbbkttt 31
Troubleshooting DOCKEr PrODIEMS ...ttt es et 32
References — COMMON WED @rChitECIUIES......... vt esisss st ssesesessesesens 32
Common client-side web technologies 33
HTIMIL ettt eesss e eesss s eee s stk 8 888885 33
S ettt ettt bs e etk R R8RS R8RS R8RS R8RSR RS E AR R 33
CSS PIEPIOCESSOIS ...cererieieeireeaeeeseiessesse s s s sases s sas s s st e s e s et bbbt e bbb s snneens 34
JAVASCIIPT ettt ettt st s bbb s8R E Rt 35
Legacy Web apps With JQUETY ...t s s s s 35
JQUETY VS @ SPA FIAMEWOTKoovvveriiesiiisiiisesiisssssssssssssesssssssssssssssssssssssss st sssnnens 35
ANGUIBE SPAS ..ottt e s o888 e ekt 36
REACT ..ottt s s R AR AR Ae R A e et s st 37
VU oottt ettt 4484 e e e e e 37
ChOOSING @ SPA FIramMEWOTK ...t see e stessessssssssssssssssssssssssssnsssnsses 38
References — Client Web TECANOIOGIES ...ttt ssssssssssssssssssssnsssnss 39
Develop ASP.NET Core MVC apps 40
MVC NG RAZOT PAGES.....ouiiiieiieeeceee ettt e ss e ss s ssss sttt e et strees 40

ii Contents

WY RAZOT PAQEST ...ttt see st sss st st ss st s e e 41

WHEN 10 USE MV C ..ottt esise sttt sttt b e bbb bbbt 41
MaPPING rEQUESES TO MESPONSEScuueereerieriererieeesesiseseseseesssesseses 41
References — Mapping REQUESTS t0 RESPONSEScereereenreernreieeise e ssse st sssssssssssssssssssssssssssssssssnens 43
WOTrKiNG With dEPENUENCIES ...ttt sttt s bt ees 43
DECIare YOUr AEPENUENCIES. ...t 44
SErUCLUNING the @PPIICATION w..ooreeee ettt sttt 45
FEATUIE OFQANIZATION ... s s e e e 46
CrOSS=CULTING CONMCTEINS ..ottt e e eee st es s ce s es et 48
References — Structuring @pPPlICAtIONS ...ttt sttt 50
SECUTTLY eerreereeereeeeetese s tisecesseeessecase et e s e84 4485k bbb 51
AUTNENTICATION .ottt s bbb 51
AUTNOTIZATION oottt s e bbbt 53
RETEIENCES = SECUILY ..ooreerieeeiee ettt sssssse sttt s s bbbt bbb sb s 54
ClIENT COMMUNICATION .ottt ettt bbbt 55
References — Client COMMUNICATION ...ttt se st eiees 56
Domain-driven design — Should YOU @pPIY 7 ..t essssessssesees 56
When ShOUId YOU @PPIY DDD.......eieie et sss s ssss s s s s s s s ssss s s sass s ssss s sssssasssasesans 57
When Shouldn't YOU @PPIY DDD ... sssssess s ssssssssssss s s s s sssssssssssssssssssssssssssssssssans 57
References — DOMaIN-DIiVEN DESIGN ... esseesseeessesesssesse st st ssssssessssss s sssssssssssssees 58
DEPIOYIMENT ..ottt ettt et e 8RRt 58
REFEreNCES — DEPIOYMENT ... oottt ettt 59
Working with Data in ASP.NET Core Apps 60
Entity Framework Core (for relational databases)......c...ccoiinrieneinnrinsnssssssissssisssssssssssssssssssssssssssssnens 60
THE DIDCONTEXL .ottt et e s e ek bt 60
CONTIGUIING EF COTE oottt et sk e 61
FEtChing and SEOMNG Data ..ottt et ssee s ssse st st ss et sess s 62
FELChING Felated data.......cooeveeeieie s s e 63
ENCAPSUIALING AATA oot s e s 64
RESITIENT CONNMECIIONS ..ottt ettt et 65
References — ENtity FrameEWOIK COTE.... e eeseeeeeeeesesssessesesesesse sttt ssss s sssssssssssssssssssssnees 67
EF COre OF MICTO-ORMTY ...ttt sttt sb e sb e bbb bbb 67

iii Contents

SQL OF NOSQIL .ttt ettt ettt st st e s et st s e st s e ssassssasessassssasassasessasassasessasassasases 68

AZUIE COSIMOS DB ...ttt sttt sttt ettt ees 69
Other PEISISTENCE OPLIONScuureeeererrirereieceieeise st sesesessiss et ssssessses ettt bbbttt b erieens 70
CACNING ettt b e Rk bbb 71
ASP.NET COre reSPONSE CACNING ..ttt sttt ssss st s s s sss s s sss s s s s s sasssans 71
DAt CACNING oottt e b e e bbb 72
Test ASP.NET Core MVC apps 75
KiNdS Of QUEOMALEA TESTS.......ovuieeeeeecee ettt ss s sss sttt sttt s bbbt st 75
UNIE EESTS oeeeeeeeeiee ettt e e e e e e e 75
INEEGIATION TOSES ..eueeeeee ettt etk bt 75
FUNCHIONAI TESES ..ottt et sk et 76
TESTING PYTAMIT ..ottt s bbbt e bRt 76
WHEE £0 TOST ..ottt b s bbbt 77
OrganiZINg TEST PrOJECESuuuieerieeieieeeereiseie ettt s s e e e 78
TEST NAIMING oottt ese st e e e o888k ket 79
UNit tEStING ASP.NET COIE QDS - veuuvernerereeereeeseesseessseesssesesseessssssessssessssesssssssssssssessssssssssssssssssssssssssssnssssnsssssssssssssees 80
Integration teSting ASP.INET COE @PPSovwurereeeierieeeeeeeiietseeesesse s esssssssssssssesssesssssssssssssssssssssssssssssssssssessssses 82
Functional testing ASP.NET COTE @PPS ...cwurueereereeeeeeeeeesassesssssssssessessseses 82
References — Test ASP.INET COre IMVC @PPS ...iirireensssnssnsss 85
Development process for Azure 86
VESTON <ottt ettt es s e e e8RS R e bt 86
Development environment for ASP.INET COIE @PPS ..vvrreiinisnesinsssssssssssssssssssssssssssssssssssnssssnssssssssssssness 86
Development tools ChoiCES: IDE OF @AITON ...t 86
Development workflow for Azure-hosted ASP.NET COre @Sccowcovrmrremrremerinsssnsssssssssssssssssssnsssssssssnens 87
INTHAT SETUP oottt bbb bbb s b e s s e e bbb 87
Workflow for developing Azure-hosted ASP.NET Core appliCationscoccveeeneceneeeneeenneeerneeereeeeneeeenne 88
RETEIENCES ..ottt et s e e85ttt et 90
Azure hosting recommendations for ASP.NET Core web apps 91
WED QPPIICALIONS .ottt bbbkttt ees 91
AP SEIVICE WED APPS coreeereerreieeiieeeie e sesse et s s s s asss s sssse sttt e ettt ss 91
App Service Web ApPPs fOr CONLAINETS ...t sttt sssss s s st st ssesssnos 93

iv Contents

Azure Kubernetes Service

Azure Virtual Machines

Logical processes

Data

Architecture recommendations

Contents

CHAPTER 1

Characteristics of Modern
Web Applications

“... with proper design, the features come cheaply. This approach is arduous, but continues to
succeed.”
- Dennis Ritchie

Modern web applications have higher user expectations and greater demands than ever before.
Today's web apps are expected to be available 24/7 from anywhere in the world, and usable from
virtually any device or screen size. Web applications must be secure, flexible, and scalable to meet
spikes in demand. Increasingly, complex scenarios should be handled by rich user experiences built on
the client using JavaScript, and communicating efficiently through web APIs.

ASP.NET Core is optimized for modern web applications and cloud-based hosting scenarios. Its
modular design enables applications to depend on only those features they actually use, improving
application security and performance while reducing hosting resource requirements.

Reference application: eShopOnWeb

This guidance includes a reference application, eShopOnWeb, that demonstrates some of the
principles and recommendations. The application is a simple online store which supports browsing
through a catalog of shirts, coffee mugs, and other marketing items. The reference application is
deliberately simple in order to make it easy to understand.

1 CHAPTER 1 | Characteristics of Modern Web Applications

B catalog - Microsoftesh X+ - (m] X
&< - 0O ‘ localhost:5106 big ‘ = :/_ 0
e eSHOP Login
OnWeb

afl

ON SALE

THIS WEEKEND

Showing 10 of 12 products - Page 1- 2 Next

.NET BOT BLACK SWEATSHIRT .NET BLACK & WHITE MUG PRISM WHITE T-SHIRT

$19.50 $ 8.50 $12.00

Figure 2-1. eShopOnWeb

Reference Application

. eShopOnWeb
https://github.com/dotnet/eShopOnWeb

Cloud-hosted and scalable

ASP.NET Core is optimized for the cloud (public cloud, private cloud, any cloud) because it is low-
memory and high-throughput. The smaller footprint of ASP.NET Core applications means you can
host more of them on the same hardware, and you pay for fewer resources when using pay-as-you go
cloud hosting services. The higher-throughput means you can serve more customers from an
application given the same hardware, further reducing the need to invest in servers and hosting
infrastructure.

Cross platform

ASP.NET Core is cross-platform and can run on Linux, macOS, and Windows. This opens up many new
options for both development and deployment of apps built with ASP.NET Core. Docker containers -

2 CHAPTER 1 | Characteristics of Modern Web Applications

https://github.com/dotnet/eShopOnWeb

both Linux and Windows - can host ASP.NET Core applications, allowing them to take advantage of
the benefits of containers and microservices.

Modular and loosely coupled

NuGet packages are first-class citizens in .NET Core, and ASP.NET Core apps are composed of many
libraries through NuGet. This granularity of functionality helps ensure apps only depend on and
deploy functionality they actually require, reducing their footprint and security vulnerability surface
area.

ASP.NET Core also fully supports dependency injection, both internally and at the application level.
Interfaces can have multiple implementations that can be swapped out as needed. Dependency
injection allows apps to loosely couple to those interfaces, rather than specific implementations,
making them easier to extend, maintain, and test.

Easily tested with automated tests

ASP.NET Core applications support unit testing, and their loose coupling and support for dependency
injection makes it easy to swap infrastructure concerns with fake implementations for test purposes.
ASP.NET Core also ships with a TestServer that can be used to host apps in memory. Functional tests
can then make requests to this in-memory server, exercising the full application stack (including
middleware, routing, model binding, filters, etc.) and receiving a response, all in a fraction of the time
it would take to host the app on a real server and make requests through the network layer. These
tests are especially easy to write, and valuable, for APIs, which are increasingly important in modern
web applications.

Traditional and SPA behaviors supported

Traditional web applications have involved little client-side behavior, but instead have relied on the
server for all navigation, queries, and updates the app might need to make. Each new operation made
by the user would be translated into a new web request, with the result being a full page reload in the
end user’s browser. Classic Model-View-Controller (MVC) frameworks typically follow this approach,
with each new request corresponding to a different controller action, which in turn would work with a
model and return a view. Some individual operations on a given page might be enhanced with AJAX
(Asynchronous JavaScript and XML) functionality, but the overall architecture of the app used many
different MVC views and URL endpoints. In addition, ASP.NET Core MVC also supports Razor Pages, a
simpler way to organize MVC-style pages.

Single Page Applications (SPAs), by contrast, involve very few dynamically generated server-side page
loads (if any). Many SPAs are initialized within a static HTML file that loads the necessary JavaScript
libraries to start and run the app. These apps make heavy usage of web APIs for their data needs and
can provide much richer user experiences.

3 CHAPTER 1 | Characteristics of Modern Web Applications

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://deviq.com/dependency-injection/

Many web applications involve a combination of traditional web application behavior (typically for
content) and SPAs (for interactivity). ASP.NET Core supports both MVC (Views or Page based) and web
APIs in the same application, using the same set of tools and underlying framework libraries.

Simple development and deployment

ASP.NET Core applications can be written using simple text editors and command-line interfaces, or
full-featured development environments like Visual Studio. Monolithic applications are typically
deployed to a single endpoint. Deployments can easily be automated to occur as part of a continuous
integration (Cl) and continuous delivery (CD) pipeline. In addition to traditional Cl/CD tools, Microsoft
Azure has integrated support for git repositories and can automatically deploy updates as they are
made to a specified git branch or tag. Azure DevOps provides a full-featured CI/CD build and
deployment pipeline, and GitHub Actions provide another option for projects hosted there.

Traditional ASP.NET and Web Forms

In addition to ASP.NET Core, traditional ASP.NET 4.x continues to be a robust and reliable platform for
building web applications. ASP.NET supports MVC and Web API development models, as well as Web
Forms, which is well suited to rich page-based application development and features a rich third-party
component ecosystem. Microsoft Azure has great longstanding support for ASP.NET 4.x applications,
and many developers are familiar with this platform.

Blazor

Blazor is included with ASP.NET Core 3.0 and later. It provides a new mechanism for building rich
interactive web client applications using Razor, C#, and ASP.NET Core. It offers another solution to
consider when developing modern web applications. There are two versions of Blazor to consider:
server-side and client-side.

Server-side Blazor was released in 2019 with ASP.NET Core 3.0. As its name implies, it runs on the
server, rendering changes to the client document back to the browser over the network. Server-side
Blazor provides a rich client experience without requiring client-side JavaScript and without requiring
separate page loads for each client page interaction. Changes in the loaded page are requested from
and processed by the server and then sent back to the client using SignalR.

Client-side Blazor will be released in 2020 and will eliminate the need to render changes on the server.
Instead, it will leverage WebAssembly to run .NET code within the client. The client can still make API
calls to the server if needed to request data, but all client-side behavior runs in the client via
WebAssembly, which is already supported by all major browsers and is just a Javascript library.

References — Modern Web Applications

. Introduction to ASP.NET Core
https://docs.microsoft.com/aspnet/core/

4 CHAPTER 1 | Characteristics of Modern Web Applications

https://docs.microsoft.com/aspnet/core/

Testing in ASP.NET Core
https://docs.microsoft.com/aspnet/core/testing/

Blazor - Get Started
https://blazor.net/docs/get-started.html

CHAPTER 1 | Characteristics of Modern Web Applications

https://docs.microsoft.com/aspnet/core/testing/
https://blazor.net/docs/get-started.html

CHAPTER 2

Choose Between
Traditional Web Apps and
Single Page Apps (SPAs)

"Atwood'’s Law: Any application that can be written in JavaScript, will eventually be written in
JavaScript.”
- Jeff Atwood

There are two general approaches to building web applications today: traditional web applications
that perform most of the application logic on the server, and single page applications (SPAs) that
perform most of the user interface logic in a web browser, communicating with the web server
primarily using web APIs. A hybrid approach is also possible, the simplest being host one or more rich
SPA-like subapplications within a larger traditional web application.

Use traditional web applications when:

. Your application’s client-side requirements are simple or even read-only.

. Your application needs to function in browsers without JavaScript support.

. Your team is unfamiliar with JavaScript or TypeScript development techniques.
Use a SPA when:

. Your application must expose a rich user interface with many features.

. Your team is familiar with JavaScript and/or TypeScript development.

. Your application must already expose an API for other (internal or public) clients.

Additionally, SPA frameworks require greater architectural and security expertise. They experience
greater churn due to frequent updates and new frameworks than traditional web applications.
Configuring automated build and deployment processes and utilizing deployment options like
containers may be more difficult with SPA applications than traditional web apps.

Improvements in user experience made possible by the SPA approach must be weighed against these
considerations.

6 CHAPTER 2 | Choose Between Traditional Web Apps and Single Page Apps (SPAs)

Blazor

ASP.NET Core 3.0 introduces a new model for building rich, interactive, and composable Ul called
Blazor. Blazor server-side allows developers to build Ul with C# and Razor on the server and for the Ul
to be interactively connected to the browser in real-time using a persistent SignalR connection.

Blazor WebAssembly introduces another option for Blazor apps, allowing them to run in the browser
using WebAssembly. Because it's real .NET running on WebAssembly, you can re-use code and
libraries from server-side parts of your application.

Blazor provides a new, third option to consider when evaluating whether to build a purely server-
rendered web application or a SPA. You can build rich, SPA-like client-side behaviors using Blazor,
without the need for a significant JavaScript development. Blazor applications can call APIs to request
data or perform server-side operations.

Consider building your web application with Blazor when:

. Your application must expose a rich user interface

. Your team is more comfortable with .NET development than JavaScript or TypeScript
development

For more information about Blazor, see Get started with Blazor.

When to choose traditional web apps

The following is a more detailed explanation of the previously stated reasons for picking traditional
web applications.

Your application has simple, possibly read-only, client-side requirements

Many web applications are primarily consumed in a read-only fashion by the vast majority of their
users. Read-only (or read-mostly) applications tend to be much simpler than those that maintain and
manipulate a great deal of state. For example, a search engine might consist of a single entry point
with a textbox and a second page for displaying search results. Anonymous users can easily make
requests, and there is little need for client-side logic. Likewise, a blog or content management
system'’s public-facing application usually consists mainly of content with little client-side behavior.
Such applications are easily built as traditional server-based web applications, which perform logic on
the web server and render HTML to be displayed in the browser. The fact that each unique page of
the site has its own URL that can be bookmarked and indexed by search engines (by default, without
having to add this as a separate feature of the application) is also a clear benefit in such scenarios.

Your application needs to function in browsers without JavaScript support

Web applications that need to function in browsers with limited or no JavaScript support should be
written using traditional web app workflows (or at least be able to fall back to such behavior). SPAs
require client-side JavaScript in order to function; if it's not available, SPAs are not a good choice.

Your team is unfamiliar with JavaScript or TypeScript development techniques

7 CHAPTER 2 | Choose Between Traditional Web Apps and Single Page Apps (SPAs)

https://blazor.net/docs/get-started.html

If your team is unfamiliar with JavaScript or TypeScript, but is familiar with server-side web application
development, then they will probably be able to deliver a traditional web app more quickly than a
SPA. Unless learning to program SPAs is a goal, or the user experience afforded by a SPA is required,
traditional web apps are a more productive choice for teams who are already familiar with building
them.

When to choose SPAs

The following is a more detailed explanation of when to choose a Single Page Applications style of
development for your web app.

Your application must expose a rich user interface with many features

SPAs can support rich client-side functionality that doesn't require reloading the page as users take
actions or navigate between areas of the app. SPAs can load more quickly, fetching data in the
background, and individual user actions are more responsive since full page reloads are rare. SPAs can
support incremental updates, saving partially completed forms or documents without the user having
to click a button to submit a form. SPAs can support rich client-side behaviors, such as drag-and-drop,
much more readily than traditional applications. SPAs can be designed to run in a disconnected mode,
making updates to a client-side model that are eventually synchronized back to the server once a
connection is re-established. Choose a SPA-style application if your app’s requirements include rich
functionality that goes beyond what typical HTML forms offer.

Frequently, SPAs need to implement features that are built in to traditional web apps, such as
displaying a meaningful URL in the address bar reflecting the current operation (and allowing users to
bookmark or deep link to this URL to return to it). SPAs also should allow users to use the browser’s
back and forward buttons with results that won't surprise them.

Your team is familiar with JavaScript and/or TypeScript development

Writing SPAs requires familiarity with JavaScript and/or TypeScript and client-side programming
techniques and libraries. Your team should be competent in writing modern JavaScript using a SPA
framework like Angular.

References — SPA Frameworks

. Angular
https://anqular.io

. React https://reactjs.org/

. Comparison of JavaScript Frameworks
https://ijsreport.io/the-ultimate-quide-to-javascript-frameworks/

Your application must already expose an API for other (internal or public) clients

If you're already supporting a web API for use by other clients, it may require less effort to create a
SPA implementation that leverages these APIs rather than reproducing the logic in server-side form.
SPAs make extensive use of web APIs to query and update data as users interact with the application.

8 CHAPTER 2 | Choose Between Traditional Web Apps and Single Page Apps (SPAs)

https://angular.io/
https://reactjs.org/
https://jsreport.io/the-ultimate-guide-to-javascript-frameworks/

When to choose Blazor

The following is a more detailed explanation of when to choose Blazor for your web app.

Your application must expose a rich user interface

Like JavaScript-based SPAs, Blazor applications can support rich client behavior without page reloads.
These applications are more responsive to users, fetching only the data (or HTML) required to respond
to a given user interaction. Designed properly, server-side Blazor apps can be configured to run as
client-side Blazor apps with minimal changes once this feature is supported.

Your team is more comfortable with .NET development than JavaScript or TypeScript
development

Many developers are more productive with .NET and Razor than with client-side languages like
JavaScript or TypeScript. Since the server side of the application is already being developed with .NET,
using Blazor ensures every .NET developer on the team can understand and potentially build the
behavior of the front end of the application.

Decision table

The following decision table summarizes some of the basic factors to consider when choosing
between a traditional web application, a SPA, or a Blazor app.

Traditional Web Single Page
Factor App Application Blazor App

Required Team Familiarity with Minimal Required Minimal
JavaScript/TypeScript

Support Browsers without Scripting Supported Not Supported Supported
Minimal Client-Side Application Behavior | Well-Suited Overkill Viable
Rich, Complex User Interface Limited Well-Suited Well-
Requirements Suited

9 CHAPTER 2 | Choose Between Traditional Web Apps and Single Page Apps (SPAs)

CHAPTER

Architectural principles

“If builders built buildings the way programmers wrote programs, then the first woodpecker that
came along would destroy civilization.”
- Gerald Weinberg

You should architect and design software solutions with maintainability in mind. The principles
outlined in this section can help guide you toward architectural decisions that will result in clean,
maintainable applications. Generally, these principles will guide you toward building applications out
of discrete components that are not tightly coupled to other parts of your application, but rather
communicate through explicit interfaces or messaging systems.

Common design principles

Separation of concerns

A guiding principle when developing is Separation of Concerns. This principle asserts that software
should be separated based on the kinds of work it performs. For instance, consider an application that
includes logic for identifying noteworthy items to display to the user, and which formats such items in
a particular way to make them more noticeable. The behavior responsible for choosing which items to
format should be kept separate from the behavior responsible for formatting the items, since these
behaviors are separate concerns that are only coincidentally related to one another.

Architecturally, applications can be logically built to follow this principle by separating core business
behavior from infrastructure and user-interface logic. Ideally, business rules and logic should reside in
a separate project, which should not depend on other projects in the application. This separation
helps ensure that the business model is easy to test and can evolve without being tightly coupled to
low-level implementation details. Separation of concerns is a key consideration behind the use of
layers in application architectures.

Encapsulation

Different parts of an application should use encapsulation to insulate them from other parts of the
application. Application components and layers should be able to adjust their internal implementation
without breaking their collaborators as long as external contracts are not violated. Proper use of
encapsulation helps achieve loose coupling and modularity in application designs, since objects and
packages can be replaced with alternative implementations so long as the same interface is
maintained.

10 CHAPTER 3 | Architectural principles

In classes, encapsulation is achieved by limiting outside access to the class’s internal state. If an
outside actor wants to manipulate the state of the object, it should do so through a well-defined
function (or property setter), rather than having direct access to the private state of the object.
Likewise, application components and applications themselves should expose well-defined interfaces
for their collaborators to use, rather than allowing their state to be modified directly. This frees the
application’s internal design to evolve over time without worrying that doing so will break
collaborators, so long as the public contracts are maintained.

Dependency inversion

The direction of dependency within the application should be in the direction of abstraction, not
implementation details. Most applications are written such that compile-time dependency flows in the
direction of runtime execution, producing a direct dependency graph. That is, if module A calls a
function in module B, which calls a function in module C, then at compile time A will depend on B,
which will depend on C, as shown in Figure 4-1.

Direct Dependency Graph

Compile Time Run Time

Class A Class A

References Control Flow

Class B Class B

References Control Flow

Class C Class C

Figure 4-1. Direct dependency graph.

11 CHAPTER 3 | Architectural principles

Applying the dependency inversion principle allows A to call methods on an abstraction that B
implements, making it possible for A to call B at runtime, but for B to depend on an interface
controlled by A at compile time (thus, inverting the typical compile-time dependency). At run time, the
flow of program execution remains unchanged, but the introduction of interfaces means that different
implementations of these interfaces can easily be plugged in.

Inverted Dependency Graph

Compile Time Run Time

References Control Flow

References CIaSS B

References

References Control Flow

Class C

Figure 4-2. Inverted dependency graph.

Dependency inversion is a key part of building loosely coupled applications, since implementation
details can be written to depend on and implement higher-level abstractions, rather than the other
way around. The resulting applications are more testable, modular, and maintainable as a result. The
practice of dependency injection is made possible by following the dependency inversion principle.

Explicit dependencies

Methods and classes should explicitly require any collaborating objects they need in order to
function correctly. Class constructors provide an opportunity for classes to identify the things they
need in order to be in a valid state and to function properly. If you define classes that can be
constructed and called, but that will only function properly if certain global or infrastructure
components are in place, these classes are being dishonest with their clients. The constructor contract
is telling the client that it only needs the things specified (possibly nothing if the class is just using a
parameterless constructor), but then at runtime it turns out the object really did need something else.

By following the explicit dependencies principle, your classes and methods are being honest with their
clients about what they need in order to function. Following the principle makes your code more self-
documenting and your coding contracts more user-friendly, since users will come to trust that as long
as they provide what's required in the form of method or constructor parameters, the objects they're
working with will behave correctly at run time.

12 CHAPTER 3 | Architectural principles

Single responsibility

The single responsibility principle applies to object-oriented design, but can also be considered as an
architectural principle similar to separation of concerns. It states that objects should have only one
responsibility and that they should have only one reason to change. Specifically, the only situation in
which the object should change is if the manner in which it performs its one responsibility must be
updated. Following this principle helps to produce more loosely coupled and modular systems, since
many kinds of new behavior can be implemented as new classes, rather than by adding additional
responsibility to existing classes. Adding new classes is always safer than changing existing classes,
since no code yet depends on the new classes.

In a monolithic application, we can apply the single responsibility principle at a high level to the layers
in the application. Presentation responsibility should remain in the Ul project, while data access
responsibility should be kept within an infrastructure project. Business logic should be kept in the
application core project, where it can be easily tested and can evolve independently from other
responsibilities.

When this principle is applied to application architecture and taken to its logical endpoint, you get
microservices. A given microservice should have a single responsibility. If you need to extend the
behavior of a system, it's usually better to do it by adding additional microservices, rather than by
adding responsibility to an existing one.

Learn more about microservices architecture

Don’t repeat yourself (DRY)

The application should avoid specifying behavior related to a particular concept in multiple places as
this practice is a frequent source of errors. At some point, a change in requirements will require
changing this behavior. It's likely that at least one instance of the behavior will fail to be updated, and
the system will behave inconsistently.

Rather than duplicating logic, encapsulate it in a programming construct. Make this construct the
single authority over this behavior, and have any other part of the application that requires this
behavior use the new construct.

Note

Avoid binding together behavior that is only coincidentally repetitive. For example, just because two
different constants both have the same value, that doesn’t mean you should have only one constant, if
conceptually they're referring to different things.

Persistence ignorance

Persistence ignorance (Pl) refers to types that need to be persisted, but whose code is unaffected by
the choice of persistence technology. Such types in .NET are sometimes referred to as Plain Old CLR
Objects (POCOs), because they do not need to inherit from a particular base class or implement a
particular interface. Persistence ignorance is valuable because it allows the same business model to be
persisted in multiple ways, offering additional flexibility to the application. Persistence choices might
change over time, from one database technology to another, or additional forms of persistence might

13 CHAPTER 3 | Architectural principles

https://aka.ms/MicroservicesEbook

be required in addition to whatever the application started with (for example, using a Redis cache or
Azure Cosmos DB in addition to a relational database).

Some examples of violations of this principle include:

. A required base class.

. A required interface implementation.

. Classes responsible for saving themselves (such as the Active Record pattern).
. Required parameterless constructor.

. Properties requiring virtual keyword.

. Persistence-specific required attributes.

The requirement that classes have any of the above features or behaviors adds coupling between the
types to be persisted and the choice of persistence technology, making it more difficult to adopt new
data access strategies in the future.

Bounded contexts

Bounded contexts are a central pattern in Domain-Driven Design. They provide a way of tackling
complexity in large applications or organizations by breaking it up into separate conceptual modules.
Each conceptual module then represents a context that is separated from other contexts (hence,
bounded), and can evolve independently. Each bounded context should ideally be free to choose its
own names for concepts within it, and should have exclusive access to its own persistence store.

At a minimum, individual web applications should strive to be their own bounded context, with their
own persistence store for their business model, rather than sharing a database with other applications.
Communication between bounded contexts occurs through programmatic interfaces, rather than
through a shared database, which allows for business logic and events to take place in response to
changes that take place. Bounded contexts map closely to microservices, which also are ideally
implemented as their own individual bounded contexts.

Additional resources

. JAVA Design Patterns: Principles

. Bounded Context

14 CHAPTER 3 | Architectural principles

https://java-design-patterns.com/principles/
https://martinfowler.com/bliki/BoundedContext.html

CHAPTER |

Common web application
architectures

“If you think good architecture is expensive, try bad architecture.”
- Brian Foote and Joseph Yoder

Most traditional .NET applications are deployed as single units corresponding to an executable or a
single web application running within a single IIS appdomain. This is the simplest deployment model
and serves many internal and smaller public applications very well. However, even given this single
unit of deployment, most non-trivial business applications benefit from some logical separation into
several layers.

What is a monolithic application?

A monolithic application is one that is entirely self-contained, in terms of its behavior. It may interact
with other services or data stores in the course of performing its operations, but the core of its
behavior runs within its own process and the entire application is typically deployed as a single unit. If
such an application needs to scale horizontally, typically the entire application is duplicated across
multiple servers or virtual machines.

All-in-one applications

The smallest possible number of projects for an application architecture is one. In this architecture, the
entire logic of the application is contained in a single project, compiled to a single assembly, and
deployed as a single unit.

A new ASP.NET Core project, whether created in Visual Studio or from the command line, starts out as
a simple “all-in-one” monolith. It contains all of the behavior of the application, including
presentation, business, and data access logic. Figure 5-1 shows the file structure of a single-project

app.

15 CHAPTER 4 | Common web application architectures

VS Solution Structure

Solution Explorer -0 x

R Solutien "MonolithSample’ (1 project)
4

Gp Connected Services

b =m Dependencies
b Propeni
b @B wwwroot
b 5 Controllers
4 @l Data Data Access Logic
b Bigeize - EF Migrations
b c* ApplicationDbContext.cs - EF DbContext and model design
- Models R
b AccountViewModels
b MansgeViewModels Ul Models
b €= ApplicationUser.cs
4 &l Services
b €® |EmailSender.cs . . - - . .
i <«—— Application Services (interfaces and implementations)
b ©* MessageServices.cs
4 Views
4 Account
b Home
(3 Manage P : s
= Pr ion Logic
[@ _Viewimports.cshtml
[_viewStart.cshtml
¥ app.config
b &T appsettings.json
b £T bowerjson
£T bundleconfig.json Application Entry Point and Configuration
b Program.cs
b ¥ Startup.cs

Figure 5-1. A single project ASP.NET Core app.

In a single project scenario, separation of concerns is achieved through the use of folders. The default
template includes separate folders for MVC pattern responsibilities of Models, Views, and Controllers,
as well as additional folders for Data and Services. In this arrangement, presentation details should be
limited as much as possible to the Views folder, and data access implementation details should be
limited to classes kept in the Data folder. Business logic should reside in services and classes within
the Models folder.

Although simple, the single-project monolithic solution has some disadvantages. As the project’s size
and complexity grows, the number of files and folders will continue to grow as well. User interface (Ul)
concerns (models, views, controllers) reside in multiple folders, which aren’t grouped together
alphabetically. This issue only gets worse when additional Ul-level constructs, such as Filters or
ModelBinders, are added in their own folders. Business logic is scattered between the Models and
Services folders, and there’s no clear indication of which classes in which folders should depend on
which others. This lack of organization at the project level frequently leads to spaghetti code.

To address these issues, applications often evolve into multi-project solutions, where each project is
considered to reside in a particular layer of the application.

What are layers?

As applications grow in complexity, one way to manage that complexity is to break up the application
according to its responsibilities or concerns. This follows the separation of concerns principle and can
help keep a growing codebase organized so that developers can easily find where certain functionality
is implemented. Layered architecture offers a number of advantages beyond just code organization,
though.

16 CHAPTER 4 | Common web application architectures

https://deviq.com/spaghetti-code/

By organizing code into layers, common low-level functionality can be reused throughout the
application. This reuse is beneficial because it means less code needs to be written and because it can
allow the application to standardize on a single implementation, following the don't repeat yourself
(DRY) principle.

With a layered architecture, applications can enforce restrictions on which layers can communicate
with other layers. This helps to achieve encapsulation. When a layer is changed or replaced, only those
layers that work with it should be impacted. By limiting which layers depend on which other layers, the
impact of changes can be mitigated so that a single change doesn’'t impact the entire application.

Layers (and encapsulation) make it much easier to replace functionality within the application. For
example, an application might initially use its own SQL Server database for persistence, but later could
choose to use a cloud-based persistence strategy, or one behind a web API. If the application has
properly encapsulated its persistence implementation within a logical layer, that SQL Server specific
layer could be replaced by a new one implementing the same public interface.

In addition to the potential of swapping out implementations in response to future changes in
requirements, application layers can also make it easier to swap out implementations for testing
purposes. Instead of having to write tests that operate against the real data layer or Ul layer of the
application, these layers can be replaced at test time with fake implementations that provide known
responses to requests. This typically makes tests much easier to write and much faster to run when
compared to running tests against the application’s real infrastructure.

Logical layering is a common technique for improving the organization of code in enterprise software
applications, and there are several ways in which code can be organized into layers.

Note

Layers represent logical separation within the application. In the event that application logic is
physically distributed to separate servers or processes, these separate physical deployment targets are
referred to as tiers. It's possible, and quite common, to have an N-Layer application that is deployed
to a single tier.

Traditional “N-Layer” architecture applications

The most common organization of application logic into layers is shown in Figure 5-2.

17 CHAPTER 4 | Common web application architectures

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Application Layers

User Interface

Data Access

Figure 5-2. Typical application layers.

These layers are frequently abbreviated as Ul, BLL (Business Logic Layer), and DAL (Data Access Layer).
Using this architecture, users make requests through the Ul layer, which interacts only with the BLL.
The BLL, in turn, can call the DAL for data access requests. The Ul layer shouldn’t make any requests to
the DAL directly, nor should it interact with persistence directly through other means. Likewise, the BLL
should only interact with persistence by going through the DAL. In this way, each layer has its own
well-known responsibility.

One disadvantage of this traditional layering approach is that compile-time dependencies run from
the top to the bottom. That is, the Ul layer depends on the BLL, which depends on the DAL. This
means that the BLL, which usually holds the most important logic in the application, is dependent on
data access implementation details (and often on the existence of a database). Testing business logic
in such an architecture is often difficult, requiring a test database. The dependency inversion principle
can be used to address this issue, as you'll see in the next section.

Figure 5-3 shows an example solution, breaking the application into three projects by responsibility
(or layer).

18 CHAPTER 4 | Common web application architectures

VS Solution Structure

Solution Explorer v Bx
We- o-5a p=
Search Solution Explorer (Ctrl+;) P~
4wl
b +[c ApplicationCore - Busi /Application Model

4 [Infrastructure

e Data Access Logic (Infrastructure)
L |
b+ CatalogContextSeed.cs - EF DbContext and model design

4 /5] Web

& Connected Services 7
#8 Dependencies
&/ Properties
@ wwwroot
Controllers
Pics
Services
ViewModels il G - Presentation Logic
Views
547 appsettings.json
&£ bowerjson

4T bundleconfig.json

P &c* CatalogSettings.cs
b &t Program.cs
b &C* Startup.cs B
tests

vTevwvvwvvvTYTYw
O o ow @

Automated Tests

Figure 5-3. A simple monolithic application with three projects.

Although this application uses several projects for organizational purposes, it's still deployed as a
single unit and its clients will interact with it as a single web app. This allows for very simple
deployment process. Figure 5-4 shows how such an app might be hosted using Azure.

Create and Deploy Web app in

Azure App Service

Deploy project

toweb app
Create project
and web app
WVisual Studio .
Web project

Figure 5-4. Simple deployment of Azure Web App

As application needs grow, more complex and robust deployment solutions may be required. Figure
5-5 shows an example of a more complex deployment plan that supports additional capabilities.

19 CHAPTER 4 | Common web application architectures

App Service Plan Azure SQL Database

e | &

logical server
Instances 9

_____________ 1_ S '_l E_\':
access token database database

|
. | .
Azure Active | App Service app
Directory [
« [
4 authenticate | St t
2 | last-known good Orage accoun
|
O IP address | Blob container
[1_|_J] > + production
|
|
@—p C— staging app logs web server
. | logs
validate I+ Deployment slots

deployment I

ég;;‘fﬂj’ [ﬁ]

Resource

group
Source control

Figure 5-5. Deploying a web app to an Azure App Service

Internally, this project’s organization into multiple projects based on responsibility improves the
maintainability of the application.

This unit can be scaled up or out to take advantage of cloud-based on-demand scalability. Scaling up
means adding additional CPU, memory, disk space, or other resources to the server(s) hosting your
app. Scaling out means adding additional instances of such servers, whether these are physical
servers, virtual machines, or containers. When your app is hosted across multiple instances, a load
balancer is used to assign requests to individual app instances.

The simplest approach to scaling a web application in Azure is to configure scaling manually in the
application’s App Service Plan. Figure 5-6 shows the appropriate Azure dashboard screen to configure
how many instances are serving an app.

20 CHAPTER 4 | Common web application architectures

Essentials ~ 1 "‘ﬁ:‘\ <}

demoasei-rg Premium: 1 Small
tazal - Central
Ready
urple Dei Subscripti
edociSad-bife-4bbe-adal-3034c51dbass
Usage
File System Storage Quotas Scale =t s
SERVICEPLAN SERVICEPLAN SERVICEPLAN I INSTANGCES PRELIST
Mermnory Percentage 33% Autoscale On 1
CPU Percentage 1 Instances 1 * Seale by
0.01% : 9 *
an instance count that | enter manually v
| Description
Manual setup means that the number of instances you choose won't change, sven if thers are
changes in load.
Estimated spend Worker Pool Instances
SERVICEPLAN J 1

View your spending in - E m _l’ -q

your App Service

|
-~

Environment settings

WP1

Figure 5-6. App Service Plan scaling in Azure.

Clean architecture

Applications that follow the Dependency Inversion Principle as well as the Domain-Driven Design
(DDD) principles tend to arrive at a similar architecture. This architecture has gone by many names
over the years. One of the first names was Hexagonal Architecture, followed by Ports-and-Adapters.
More recently, it's been cited as the Onion Architecture or Clean Architecture. The latter name, Clean
Architecture, is used as the name for this architecture in this e-book.

The eShopOnWeb reference application uses the Clean Architecture approach in organizing its code
into projects. You can find a solution template you can use as a starting point for your own ASP.NET
Core on the ardalis/cleanarchitecture GitHub repository.

Clean architecture puts the business logic and application model at the center of the application.
Instead of having business logic depend on data access or other infrastructure concerns, this
dependency is inverted: infrastructure and implementation details depend on the Application Core.
This is achieved by defining abstractions, or interfaces, in the Application Core, which are then
implemented by types defined in the Infrastructure layer. A common way of visualizing this
architecture is to use a series of concentric circles, similar to an onion. Figure 5-7 shows an example of
this style of architectural representation.

21 CHAPTER 4 | Common web application architectures

https://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://github.com/ardalis/cleanarchitecture

Clean Architecture Layers (Onion view)

User Interface

Controllers View Models

Domain Services

Interfaces

Entities

Application Core External Dependencies

QD &

SN
=

Figure 5-7. Clean Architecture; onion view

In this diagram, dependencies flow toward the innermost circle. The Application Core takes its name
from its position at the core of this diagram. And you can see on the diagram that the Application
Core has no dependencies on other application layers. The application’s entities and interfaces are at
the very center. Just outside, but still in the Application Core, are domain services, which typically
implement interfaces defined in the inner circle. Outside of the Application Core, both the Ul and the
Infrastructure layers depend on the Application Core, but not on one another (necessarily).

Figure 5-8 shows a more traditional horizontal layer diagram that better reflects the dependency
between the Ul and other layers.

22 CHAPTER 4 | Common web application architectures

== == == === Optional Compile-Time Dependency

Clean Architecture Layers — Gt Ty

User Interface

Application Core

Figure 5-8. Clean Architecture, horizontal layer view

Note that the solid arrows represent compile-time dependencies, while the dashed arrow represents a
runtime-only dependency. With the clean architecture, the Ul layer works with interfaces defined in
the Application Core at compile time, and ideally shouldn’t know about the implementation types
defined in the Infrastructure layer. At run time, however, these implementation types are required for
the app to execute, so they need to be present and wired up to the Application Core interfaces via
dependency injection.

Figure 5-9 shows a more detailed view of an ASP.NET Core application’s architecture when built
following these recommendations.

23 CHAPTER 4 | Common web application architectures

Compile Time Dependency

ASPNET Core Architecture e

ASP.NET Core Web App Infrastructure Project

<
o
2
Z
o
Q.
&
=
s

=

8
58
[-%
S0
g
=

o

2

g3
g2
mm
o3
a3
a<
Tm
28
(ks
a®
o =
Q(D

7
Redis Cache)
Application Core Project Data Sources Third Party Services

/

H '

' I '

} ‘ i == bl 1
' L 3 X]

3 1 : { } P 3
i P i

i POCO Application Shecificati : ' i i

3 Entities Exceptions peciiications ' '} GitHub API SendGrid AP Twilio APl !

H R T e e e L . S B !

H '

H '

g '

' '

i

' 1

Figure 5-9. ASP.NET Core architecture diagram following Clean Architecture.

Because the Application Core doesn’'t depend on Infrastructure, it's very easy to write automated unit
tests for this layer. Figures 5-10 and 5-11 show how tests fit into this architecture.

Domain Services

Interfaces
Entities

Application Core

Figure 5-10. Unit testing Application Core in isolation.

24 CHAPTER 4 | Common web application architectures

External Dependencies

Integration
Tests

Figure 5-11. Integration testing Infrastructure implementations with external dependencies.

Since the Ul layer doesn’t have any direct dependency on types defined in the Infrastructure project,
it's likewise very easy to swap out implementations, either to facilitate testing or in response to
changing application requirements. ASP.NET Core's built-in use of and support for dependency
injection makes this architecture the most appropriate way to structure non-trivial monolithic
applications.

For monolithic applications the Application Core, Infrastructure, and Ul projects are all run as a single
application. The runtime application architecture might look something like Figure 5-12.

25 CHAPTER 4 | Common web application architectures

ASPNET Core Architecture

ASPNET Core Web App
(Kestrel/Weblistener Host)

Data Sources

R O *
L (T R e -
cen s Re\? E r. “"‘ { }

i
:
i
:
]
Proxy ! Redis fecte Coche saL Document]
H Cache Service e I Database _ __ Database _______ :
H
H
H
:

Azure S

ure Service i

j€m == >
| S

Azure
Service Bus

EF Core OAuth Azure Active
Provider Provider(s) Directory

GitHub API SendGrid API Twilio API
Figure 5-12. A sample ASP.NET Core app's runtime architecture.

Organizing code in Clean Architecture

In a Clean Architecture solution, each project has clear responsibilities. As such, certain types belong
in each project and you'll frequently find folders corresponding to these types in the appropriate
project.

The Application Core holds the business model, which includes entities, services, and interfaces. These
interfaces include abstractions for operations that will be performed using Infrastructure, such as data
access, file system access, network calls, etc. Sometimes services or interfaces defined at this layer will
need to work with non-entity types that have no dependencies on Ul or Infrastructure. These can be
defined as simple Data Transfer Objects (DTOs).

Application Core types

. Entities (business model classes that are persisted)

. Interfaces

. Services

. DTOs

The Infrastructure project typically includes data access implementations. In a typical ASP.NET Core
web application, these implementations include the Entity Framework (EF) DbContext, any EF Core

Migration objects that have been defined, and data access implementation classes. The most
common way to abstract data access implementation code is through the use of the Repository

design pattern.

In addition to data access implementations, the Infrastructure project should contain implementations
of services that must interact with infrastructure concerns. These services should implement interfaces

26 CHAPTER 4 | Common web application architectures

https://deviq.com/repository-pattern/
https://deviq.com/repository-pattern/

defined in the Application Core, and so Infrastructure should have a reference to the Application Core
project.

Infrastructure types

. EF Core types (DbContext, Migration)

. Data access implementation types (Repositories)

. Infrastructure-specific services (for example, FileLogger or SmtpNotifier)

The user interface layer in an ASP.NET Core MVC application is the entry point for the application. This
project should reference the Application Core project, and its types should interact with infrastructure

strictly through interfaces defined in Application Core. No direct instantiation of or static calls to the
Infrastructure layer types should be allowed in the Ul layer.

Ul layer types

. Controllers
. Filters

. Views

. ViewModels
. Startup

The Startup class is responsible for configuring the application, and for wiring up implementation
types to interfaces, allowing dependency injection to work properly at run time.

Note

In order to wire up dependency injection in ConfigureServices in the Startup.cs file of the Ul project,
the project may need to reference the Infrastructure project. This dependency can be eliminated, most
easily by using a custom DI container. For the purposes of this sample, the simplest approach is to
allow the Ul project to reference the Infrastructure project.

Monolithic applications and containers

You can build a single and monolithic-deployment based Web Application or Service and deploy it as
a container. Within the application, it might not be monolithic but organized into several libraries,
components, or layers. Externally, it's a single container like a single process, single web application, or
single service.

To manage this model, you deploy a single container to represent the application. To scale, just add
additional copies with a load balancer in front. The simplicity comes from managing a single
deployment in a single container or VM.

27 CHAPTER 4 | Common web application architectures

Monolithic Containerized application

App 1 =1 Container A monolithic application has

most of its functionality within
ﬂ a single process/container that
is componentized with internal
C layers or libraries.
Host 1
(Server/VM) El [ﬂ]
Host 2 Scales out by cloning
(server/VM) EI H the app/container on
multiple servers/VMs
Host 3
(Server/VM) EI H]

Need to deploy Coarse-grained
the full density of

application applications

You can include multiple components/libraries or internal layers within each container, as illustrated in
Figure 5-13. But, following the container principle of _"a container does one thing, and does it in one
process_", the monolithic pattern might be a conflict.

The downside of this approach comes if/when the application grows, requiring it to scale. If the entire
application scales, it's not really a problem. However, in most cases, a few parts of the application are
the choke points requiring scaling, while other components are used less.

Using the typical eCommerce example, what you likely need to scale is the product information
component. Many more customers browse products than purchase them. More customers use their
basket than use the payment pipeline. Fewer customers add comments or view their purchase history.
And you likely only have a handful of employees, in a single region, that need to manage the content
and marketing campaigns. By scaling the monolithic design, all the code is deployed multiple times.

In addition to the "scale everything” problem, changes to a single component require complete
retesting of the entire application, and a complete redeployment of all the instances.

The monolithic approach is common, and many organizations are developing with this architectural
approach. Many are having good enough results, while others are hitting limits. Many designed their
applications in this model, because the tools and infrastructure were too difficult to build service-
oriented architectures (SOA), and they didn't see the need until the app grew. If you find you're hitting
the limits of the monolithic approach, breaking up the app to enable it to better leverage containers
and microservices may be the next logical step.

28 CHAPTER 4 | Common web application architectures

Architecture in Docker infrastructure
for monolithic applications

e Microsoft
> Azure

Host 1 (VM)
Ao e

Host 2 (VM)
Ao 28

Host 3 (VM)
Aorgs

Browser or
Client app

Deploying monolithic applications in Microsoft Azure can be achieved using dedicated VMs for each
instance. Using Azure Virtual Machine Scale Sets, you can easily scale the VMs. Azure App Services can
run monolithic applications and easily scale instances without having to manage the VMs. Azure App
Services can run single instances of Docker containers as well, simplifying the deployment. Using
Docker, you can deploy a single VM as a Docker host, and run multiple instances. Using the Azure
balancer, as shown in the Figure 5-14, you can manage scaling.

The deployment to the various hosts can be managed with traditional deployment techniques. The
Docker hosts can be managed with commands like docker run performed manually, or through
automation such as Continuous Delivery (CD) pipelines.

Monolithic application deployed as a container

There are benefits of using containers to manage monolithic application deployments. Scaling the
instances of containers is far faster and easier than deploying additional VMs. Even when using virtual
machine scale sets to scale VMs, they take time to instance. When deployed as app instances, the
configuration of the app is managed as part of the VM.

Deploying updates as Docker images is far faster and network efficient. Docker Images typically start
in seconds, speeding rollouts. Tearing down a Docker instance is as easy as issuing a docker stop
command, typically completing in less than a second.

As containers are inherently immutable by design, you never need to worry about corrupted VMs,
whereas update scripts might forget to account for some specific configuration or file left on disk.

29 CHAPTER 4 | Common web application architectures

https://docs.microsoft.com/azure/virtual-machine-scale-sets/
https://azure.microsoft.com/services/app-service/

You can use Docker containers for monolithic deployment of simpler web applications. This improves
continuous integration and continuous deployment pipelines and helps achieve deployment-to-
production success. No more “It works on my machine, why does it not work in production?”

A microservices-based architecture has many benefits, but those benefits come at a cost of increased
complexity. In some cases, the costs outweigh the benefits, so a monolithic deployment application
running in a single container or in just a few containers is a better option.

A monolithic application might not be easily decomposable into well-separated microservices.
Microservices should work independently of each other to provide a more resilient application. If you
can't deliver independent feature slices of the application, separating it only adds complexity.

An application might not yet need to scale features independently. Many applications, when they
need to scale beyond a single instance, can do so through the relatively simple process of cloning that
entire instance. The additional work to separate the application into discrete services provides minimal
benefit when scaling full instances of the application is simple and cost-effective.

Early in the development of an application, you might not have a clear idea where the natural
functional boundaries are. As you develop a minimum viable product, the natural separation might
not yet have emerged. Some of these conditions might be temporary. You might start by creating a
monolithic application, and later separate some features to be developed and deployed as
microservices. Other conditions might be essential to the application’s problem space, meaning that
the application might never be broken into multiple microservices.

Separating an application into many discrete processes also introduces overhead. There's more
complexity in separating features into different processes. The communication protocols become
more complex. Instead of method calls, you must use asynchronous communications between
services. As you move to a microservices architecture, you need to add many of the building blocks
implemented in the microservices version of the eShopOnContainers application: event bus handling,
message resiliency and retries, eventual consistency, and more.

The much simpler eShopOnWeb reference application supports single-container monolithic container
usage. The application includes one web application that includes traditional MVC views, web APIs,
and Razor Pages. This application can be launched from the solution root using the docker-compose
build and docker-compose up commands. This command configures a container for the web
instance, using the Dockerfile found in the web project’s root, and runs the container on a specified
port. You can download the source for this application from GitHub and run it locally. Even this
monolithic application benefits from being deployed in a container environment.

For one, the containerized deployment means that every instance of the application runs in the same
environment. This includes the developer environment where early testing and development take
place. The development team can run the application in a containerized environment that matches
the production environment.

In addition, containerized applications scale out at lower cost. Using a container environment enables
greater resource sharing than traditional VM environments.

Finally, containerizing the application forces a separation between the business logic and the storage
server. As the application scales out, the multiple containers will all rely on a single physical storage

30 CHAPTER 4 | Common web application architectures

https://github.com/dotnet-architecture/eShopOnWeb

medium. This storage medium would typically be a high-availability server running a SQL Server
database.

Docker support

The eShopOnWeb project runs on .NET Core. Therefore, it can run in either Linux-based or Windows-
based containers. Note that for Docker deployment, you want to use the same host type for SQL
Server. Linux-based containers allow a smaller footprint and are preferred.

You can use Visual Studio 2017 or later to add Docker support to an existing application by right-
clicking on a project in Solution Explorer and choosing Add > Docker Support. This adds the files
required and modifies the project to use them. The current eShopOniWeb sample already has these files
in place.

The solution-level docker-compose.yml file contains information about what images to build and
what containers to launch. The file allows you to use the docker-compose command to launch
multiple applications at the same time. In this case, it is only launching the Web project. You can also
use it to configure dependencies, such as a separate database container.

version: '3’

services:
eshopwebmvc:
image: eshopwebmvc
build:
context:
dockerfile: src/Web/Dockerfile
environment:
- ASPNETCORE_ENVIRONMENT=Development
ports:
- "5106:5106"

networks:
default:
external:
name: nat

The docker-compose.yml file references the Dockerfile in the Web project. The Dockerfile is used to
specify which base container will be used and how the application will be configured on it. The Web’
Dockerfile:

FROM mcr.microsoft.com/dotnet/core/sdk:3.1 AS build
WORKDIR /app

COPY *.sln .

COPY .

WORKDIR /app/src/Web
RUN dotnet restore

RUN dotnet publish -c Release -o out
FROM mcr.microsoft.com/dotnet/core/aspnet:3.1 AS runtime

WORKDIR /app
COPY --from=build /app/src/Web/out ./

31 CHAPTER 4 | Common web application architectures

ENTRYPOINT ["dotnet", "Web.d11"]

Troubleshooting Docker problems

Once you run the containerized application, it continues to run until you stop it. You can view which
containers are running with the docker ps command. You can stop a running container by using the
docker stop command and specifying the container ID.

Note that running Docker containers may be bound to ports you might otherwise try to use in your
development environment. If you try to run or debug an application using the same port as a running
Docker container, you'll get an error stating that the server can't bind to that port. Once again,
stopping the container should resolve the issue.

If you want to add Docker support to your application using Visual Studio, make sure Docker Desktop
is running when you do so. The wizard won't run correctly if Docker Desktop isn't running when you
start the wizard. In addition, the wizard examines your current container choice to add the correct
Docker support. If you want to add support for Windows Containers, you need to run the wizard while
you have Docker Desktop running with Windows Containers configured. If you want to add support
for Linux containers, run the wizard while you have Docker running with Linux containers configured.

References — Common web architectures
. The Clean Architecture
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

. The Onion Architecture
https://jeffreypalermo.com/blog/the-onion-architecture-part-1/

. The Repository Pattern
https://devig.com/repository-pattern/

. Clean Architecture Solution Template
https://github.com/ardalis/cleanarchitecture

. Architecting Microservices e-book
https://aka.ms/MicroservicesEbook

. DDD (Domain-Driven Design)
https://docs.microsoft.com/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/

32 CHAPTER 4 | Common web application architectures

https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://deviq.com/repository-pattern/
https://github.com/ardalis/cleanarchitecture
https://aka.ms/MicroservicesEbook
https://docs.microsoft.com/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/

CHAPTER

Common client-side web
technologies

“Websites should look good from the inside and out.”
- Paul Cookson

ASP.NET Core applications are web applications and they typically rely on client-side web
technologies like HTML, CSS, and JavaScript. By separating the content of the page (the HTML) from
its layout and styling (the CSS), and its behavior (via JavaScript), complex web apps can leverage the
Separation of Concerns principle. Future changes to the structure, design, or behavior of the
application can be made more easily when these concerns are not intertwined.

While HTML and CSS are relatively stable, JavaScript, by means of the application frameworks and
utilities developers work with to build web-based applications, is evolving at breakneck speed. This
chapter looks at a few ways that JavaScript is used by web developers and provides a high-level
overview of the Angular and React client-side libraries.

Note

Blazor provides an alternative to JavaScript frameworks for building rich, interactive client user
interfaces. Client-side Blazor support is still in preview, so for now it's out of scope for this chapter.

HTML

HTML is the standard markup language used to create web pages and web applications. Its elements
form the building blocks of pages, representing formatted text, images, form inputs, and other
structures. When a browser makes a request to a URL, whether fetching a page or an application, the
first thing that is returned is an HTML document. This HTML document may reference or include
additional information about its look and layout in the form of CSS, or behavior in the form of
JavaScript.

CSS

CSS (Cascading Style Sheets) is used to control the look and layout of HTML elements. CSS styles can
be applied directly to an HTML element, defined separately on the same page, or defined in a
separate file and referenced by the page. Styles cascade based on how they are used to select a given

33 CHAPTER 5 | Common client-side web technologies

HTML element. For instance, a style might apply to an entire document, but would be overridden by a
style that applied to a particular element. Likewise, an element-specific style would be overridden by a
style that applied to a CSS class that was applied to the element, which in turn would be overridden
by a style targeting a specific instance of that element (via its ID). Figure 6-1

CSS Specificity

+ Least specific; applies most broadly

+ Applies to all elements the CSS class as been applied to
+ Elements can have multiple classes applied to them

+ References a unique HTML element via its ID

+ Most specific
A ¢ Added to HTML element directly

Attribute

* Attribute and pseudo-class selectors also apply at this level
Figure 6-1. CSS Specificity rules, in order.

It's best to keep styles in their own separate stylesheet files, and to use selection-based cascading to
implement consistent and reusable styles within the application. Placing style rules within HTML
should be avoided, and applying styles to specific individual elements (rather than whole classes of
elements, or elements that have had a particular CSS class applied to them) should be the exception,
not the rule.

CSS preprocessors

CSS stylesheets lack support for conditional logic, variables, and other programming language
features. Thus, large stylesheets often include quite a bit of repetition, as the same color, font, or other
setting is applied to many different variations of HTML elements and CSS classes. CSS preprocessors
can help your stylesheets follow the DRY principle by adding support for variables and logic.

The most popular CSS preprocessors are Sass and LESS. Both extend CSS and are backward
compatible with it, meaning that a plain CSS file is a valid Sass or LESS file. Sass is Ruby-based and
LESS is JavaScript based, and both typically run as part of your local development process. Both have
command-line tools available, as well as built-in support in Visual Studio for running them using Gulp
or Grunt tasks.

34 CHAPTER 5 | Common client-side web technologies

https://deviq.com/don-t-repeat-yourself/

JavaScript

JavaScript is a dynamic, interpreted programming language that has been standardized in the
ECMAScript language specification. It is the programming language of the web. Like CSS, JavaScript
can be defined as attributes within HTML elements, as blocks of script within a page, or in separate
files. Just like CSS, it's recommended to organize JavaScript into separate files, keeping it separated as
much as possible from the HTML found on individual web pages or application views.

When working with JavaScript in your web application, there are a few tasks that you'll commonly
need to perform:

. Selecting an HTML element and retrieving and/or updating its value.

. Querying a Web API for data.

. Sending a command to a Web API (and responding to a callback with its result).
. Performing validation.

You can perform all of these tasks with JavaScript alone, but many libraries exist to make these tasks
easier. One of the first and most successful of these libraries is jQuery, which continues to be a
popular choice for simplifying these tasks on web pages. For Single Page Applications (SPAs), jQuery
doesn’t provide many of the desired features that Angular and React offer.

Legacy web apps with jQuery

Although ancient by JavaScript framework standards, jQuery continues to be a commonly used library
for working with HTML/CSS and building applications that make AJAX calls to web APIs. However,
jQuery operates at the level of the browser document object model (DOM), and by default offers only
an imperative, rather than declarative, model.

For example, imagine that if a textbox's value exceeds 10, an element on the page should be made
visible. In jQuery, this would typically be implemented by writing an event handler with code that
would inspect the textbox’s value and set the visibility of the target element based on that value. This
is an imperative, code-based approach. Another framework might instead use databinding to bind the
visibility of the element to the value of the textbox declaratively. This would not require writing any
code, but instead only requires decorating the elements involved with data binding attributes. As
client-side behaviors grow more complex, data binding approaches frequently result in simpler
solutions with less code and conditional complexity.

jQuery vs a SPA Framework

Factor jQuery ‘ Angular

Abstracts the DOM Yes Yes
AJAX Support Yes Yes
Declarative Data Binding | No Yes
MVC-style Routing No Yes

35 CHAPTER 5 | Common client-side web technologies

Factor jQuery ‘ Angular

Templating No Yes

Deep-Link Routing No Yes

Most of the features jQuery lacks intrinsically can be added with the addition of other libraries.
However, a SPA framework like Angular provides these features in a more integrated fashion, since it's
been designed with all of them in mind from the start. Also, jQuery is an imperative library, meaning
that you need to call jQuery functions in order to do anything with jQuery. Much of the work and
functionality that SPA frameworks provide can be done declaratively, requiring no actual code to be
written.

Data binding is a great example of this. In jQuery, it usually only takes one line of code to get the
value of a DOM element or to set an element’s value. However, you have to write this code anytime
you need to change the value of the element, and sometimes this will occur in multiple functions on a
page. Another common example is element visibility. In jQuery, there might be many different places
where you'd write code to control whether certain elements were visible. In each of these cases, when
using data binding, no code would need to be written. You'd simply bind the value or visibility of the
elements in question to a viewmodel on the page, and changes to that viewmodel would
automatically be reflected in the bound elements.

Angular SPAs

Angular remains one of the world’'s most popular JavaScript frameworks. Since Angular 2, the team
rebuilt the framework from the ground up (using TypeScript) and rebranded from the original
Angular)S name to simply Angular. Now several years old, the redesigned Angular continues to be a
robust framework for building Single Page Applications.

Angular applications are built from components. Components combine HTML templates with special
objects and control a portion of the page. A simple component from Angular's docs is shown here:

import { Component } from '@angular/core’;

@Component ({

selector: 'my-app’,

template: “<hl>Hello {{name}}</h1>"
1)

export class AppComponent { name = 'Angular'; }

Components are defined using the @Component decorator function, which takes in metadata about
the component. The selector property identifies the ID of the element on the page where this
component will be displayed. The template property is a simple HTML template that includes a
placeholder that corresponds to the component’s name property, defined on the last line.

By working with components and templates, instead of DOM elements, Angular apps can operate at a
higher level of abstraction and with less overall code than apps written using just JavaScript (also
called “vanilla JS") or with jQuery. Angular also imposes some order on how you organize your client-
side script files. By convention, Angular apps use a common folder structure, with module and

36 CHAPTER 5 | Common client-side web technologies

https://www.typescriptlang.org/

component script files located in an app folder. Angular scripts concerned with building, deploying,
and testing the app are typically located in a higher-level folder.

You can develop Angular apps by using a CLI. Getting started with Angular development locally
(assuming you already have git and npm installed) consists of simply cloning a repo from GitHub and
running npm install and npm start. Beyond this, Angular ships its own CLI, which can create
projects, add files, and assist with testing, bundling, and deployment tasks. This CLI friendliness makes
Angular especially compatible with ASP.NET Core, which also features great CLI support.

Microsoft has developed a reference application, eShopOnContainers, which includes an Angular SPA
implementation. This app includes Angular modules to manage the online store's shopping basket,
load and display items from its catalog, and handling order creation. You can view and download the
sample application from GitHub.

React

Unlike Angular, which offers a full Model-View-Controller pattern implementation, React is only
concerned with views. It's not a framework, just a library, so to build a SPA you’ll need to leverage
additional libraries. There are a number of libraries that are designed to be used with React to
produce rich single page applications.

One of React’s most important features is its use of a virtual DOM. The virtual DOM provides React
with several advantages, including performance (the virtual DOM can optimize which parts of the
actual DOM need to be updated) and testability (no need to have a browser to test React and its
interactions with its virtual DOM).

React is also unusual in how it works with HTML. Rather than having a strict separation between code
and markup (with references to JavaScript appearing in HTML attributes perhaps), React adds HTML
directly within its JavaScript code as JSX. JSX is HTML-like syntax that can compile down to pure
JavaScript. For example:

{ authors.map(author =>
<1i key={author.id}>{author.name}</1i>

)}

If you already know JavaScript, learning React should be easy. There isn't nearly as much learning
curve or special syntax involved as with Angular or other popular libraries.

Because React isn't a full framework, you'll typically want other libraries to handle things like routing,
web API calls, and dependency management. The nice thing is, you can pick the best library for each
of these, but the disadvantage is that you need to make all of these decisions and verify all of your

chosen libraries work well together when you're done. If you want a good starting point, you can use
a starter kit like React Slingshot, which prepackages a set of compatible libraries together with React.

Vue

From its getting started guide, "Vue is a progressive framework for building user interfaces. Unlike
other monolithic frameworks, Vue is designed from the ground up to be incrementally adoptable. The

37 CHAPTER 5 | Common client-side web technologies

https://aka.ms/MicroservicesArchitecture
https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/Web/WebSPA

core library is focused on the view layer only, and is easy to pick up and integrate with other libraries
or existing projects. On the other hand, Vue is perfectly capable of powering sophisticated Single-
Page Applications when used in combination with modern tooling and supporting libraries.”

Getting started with Vue simply requires including its script within an HTML file:

<!-- development version, includes helpful console warnings -->
<script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

With the framework added, you're then able to declaratively render data to the DOM using Vue's
straightforward templating syntax:

<div id="app">

{{ message }}
</div>

and then adding the following script:

var app = new Vue({
el: '#app',
data: {
message: 'Hello Vue!'
}
})

This is enough to render “Hello Vue!” on the page. Note, however, that Vue isn't simply rendering the
message to the div once. It supports databinding and dynamic updates such that if the value of
message changes, the value in the <div> is immediately updated to reflect it.

Of course, this only scratches the surface of what Vue is capable of. It's gained a great deal of
popularity in the last several years and has a large community. There's a huge and growing list of
supporting components and libraries that work with Vue to extend it as well. If you're looking to add
client-side behavior to your web application or considering building a full SPA, Vue is worth
investigating.

Choosing a SPA Framework

When considering which JavaScript framework will work best to support your SPA, keep in mind the
following considerations:

. Is your team familiar with the framework and its dependencies (including TypeScript in some
cases)?

. How opinionated is the framework, and do you agree with its default way of doing things?
. Does it (or a companion library) include all of the features your app requires?

. Is it well documented?

. How active is its community? Are new projects being built with it?

. How active is its core team? Are issues being resolved and new versions shipped regularly?

38 CHAPTER 5 | Common client-side web technologies

https://github.com/vuejs/awesome-vue#redux
https://github.com/vuejs/awesome-vue#redux

JavaScript frameworks continue to evolve with breakneck speed. Use the considerations listed above
to help mitigate the risk of choosing a framework you'll later regret being dependent upon. If you're
particularly risk-averse, consider a framework that offers commercial support and/or is being
developed by a large enterprise.

References — Client Web Technologies

. HTML and CSS
https://www.w3.org/standards/webdesign/htmlcss

. Sass vs. LESS
https://www.keycdn.com/blog/sass-vs-less/

. Styling ASP.NET Core Apps with LESS, Sass, and Font Awesome
https://docs.microsoft.com/aspnet/core/client-side/less-sass-fa

. Client-Side Development in ASP.NET Core
https://docs.microsoft.com/aspnet/core/client-side/

. jQuery
https://jquery.com/

. jQuery vs AngularJS
https://www.airpair.com/angularjs/posts/jquery-angularjs-comparison-migration-walkthrough

. Angular
https://angular.io/

. React
https://reactjs.org/

. Vue
https://vuejs.org/

. Angular vs React vs Vue: Which Framework to Choose in 2020
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/

. The Top JavaScript Frameworks for Front-End Development in 2020
https://www.freecodecamp.org/news/complete-guide-for-front-end-developers-javascript-
frameworks-2019/

39 CHAPTER 5 | Common client-side web technologies

https://www.w3.org/standards/webdesign/htmlcss
https://www.keycdn.com/blog/sass-vs-less/
https://docs.microsoft.com/aspnet/core/client-side/less-sass-fa
https://docs.microsoft.com/aspnet/core/client-side/
https://jquery.com/
https://www.airpair.com/angularjs/posts/jquery-angularjs-comparison-migration-walkthrough
https://angular.io/
https://reactjs.org/
https://vuejs.org/
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/
https://www.freecodecamp.org/news/complete-guide-for-front-end-developers-javascript-frameworks-2019/
https://www.freecodecamp.org/news/complete-guide-for-front-end-developers-javascript-frameworks-2019/

CHAPTER 6

Develop ASP.NET Core
MVC apps

“It's not important to get it right the first time. It's vitally important to get it right the last time.”
- Andrew Hunt and David Thomas

ASP.NET Core is a cross-platform, open-source framework for building modern cloud-optimized web
applications. ASP.NET Core apps are lightweight and modular, with built-in support for dependency
injection, enabling greater testability and maintainability. Combined with MVC, which supports
building modern web APIs in addition to view-based apps, ASP.NET Core is a powerful framework
with which to build enterprise web applications.

MVC and Razor Pages

ASP.NET Core MVC offers many features that are useful for building web-based APIs and apps. The
term MVC stands for “Model-View-Controller”, a Ul pattern that breaks up the responsibilities of
responding to user requests into several parts. In addition to following this pattern, you can also
implement features in your ASP.NET Core apps as Razor Pages. Razor Pages are built into ASP.NET
Core MVC, and use the same features for routing, model binding, etc. However, instead of having
separate folders and files for Controllers, Views, etc. and using attribute-based routing, Razor Pages
are placed in a single folder (“/Pages”), route based on their relative location in this folder, and handle
requests with handlers instead of controller actions.

When you create a new ASP.NET Core App, you should have a plan in mind for the kind of app you
want to build. In Visual Studio, you'll choose from several templates. The three most common project
templates are Web API, Web Application, and Web Application (Model-View-Controller). Although
you can only make this decision when you first create a project, it's not an irrevocable decision. The
Web API project uses standard Model-View-Controller controllers — it just lacks Views by default.
Likewise, the default Web Application template uses Razor Pages, and so also lacks a Views folder.
You can add a Views folder to these projects later to support view-based behavior. Web API and
Model-View-Controller projects don't include a Pages folder by default, but you can add one later to
support Razor Pages-based behavior. You can think of these three templates as supporting three
different kinds of default user interaction: data (web API), page-based, and view-based. However, you
can mix and match any or all of these within a single project if you wish.

40 CHAPTER 6 | Develop ASP.NET Core MVC apps

Why Razor Pages?

Razor Pages is the default approach for new web applications in Visual Studio. Razor Pages offers a
simpler way of building page-based application features, such as non-SPA forms. Using controllers
and views, it was common for applications to have very large controllers that worked with many
different dependencies and view models and returned many different views. This resulted in more
complexity and often resulted in controllers that didn't follow the Single Responsibility Principle or
Open/Closed Principles effectively. Razor Pages addresses this issue by encapsulating the server-side
logic for a given logical “page” in a web application with its Razor markup. A Razor Page that has no
server-side logic can simply consist of a Razor file (for instance, “Index.cshtml”). However, most non-
trivial Razor Pages will have an associated page model class, which by convention is named the same
as the Razor file with a “.cs” extension (for example, “Index.cshtml.cs”).

A Razor Page's page model combines the responsibilities of an MVC controller and a viewmodel.
Instead of handling requests with controller action methods, page model handlers like “OnGet()" are
executed, rendering their associated page by default. Razor Pages simplifies the process of building
individual pages in an ASP.NET Core app, while still providing all the architectural features of ASP.NET
Core MVC. They're a good default choice for new page-based functionality.

When to use MVC

If you're building web APIs, the MVC pattern makes more sense than trying to use Razor Pages. If your
project will only expose web API endpoints, you should ideally start from the Web API project
template. Otherwise, it's easy to add controllers and associated APl endpoints to any ASP.NET Core
app. Use the view-based MVC approach if you're migrating an existing application from ASP.NET MVC
5 or earlier to ASP.NET Core MVC and you want to do so with the least amount of effort. Once you've
made the initial migration, you can evaluate whether it makes sense to adopt Razor Pages for new
features or even as a wholesale migration.

Whether you choose to build your web app using Razor Pages or MVC views, your app will have
similar performance and will include support for dependency injection, filters, model binding,
validation, and so on.

Mapping requests to responses

At its heart, ASP.NET Core apps map incoming requests to outgoing responses. At a low level, this is
done with middleware, and simple ASP.NET Core apps and microservices may be comprised solely of
custom middleware. When using ASP.NET Core MVC, you can work at a somewhat higher level,
thinking in terms of routes, controllers, and actions. Each incoming request is compared with the
application’s routing table, and if a matching route is found, the associated action method (belonging
to a controller) is called to handle the request. If no matching route is found, an error handler (in this
case, returning a NotFound result) is called.

ASP.NET Core MVC apps can use conventional routes, attribute routes, or both. Conventional routes
are defined in code, specifying routing conventions using syntax like in the example below:

41 CHAPTER 6 | Develop ASP.NET Core MVC apps

app.UseEndpoints(endpoints =>

endpoints.MapControllerRoute(name: "default", pattern:
"{controller=Home}/{action=Index}/{id?}");
1)

In this example, a route named “default” has been added to the routing table. It defines a route
template with placeholders for controller, action, and id. The controller and action placeholders have
default specified ("Home" and “Index”, respectively), and the id placeholder is optional (by virtue of a
“?" applied to it). The convention defined here states that the first part of a request should correspond
to the name of the controller, the second part to the action, and then if necessary a third part will
represent an id parameter. Conventional routes are typically defined in one place for the application,
such as in the Configure method in the Startup class.

Attribute routes are applied to controllers and actions directly, rather than specified globally. This has
the advantage of making them much more discoverable when you're looking at a particular method,
but does mean that routing information is not kept in one place in the application. With attribute
routes, you can easily specify multiple routes for a given action, as well as combine routes between
controllers and actions. For example:

[Route("Home")]
public class HomeController : Controller

{
[Route("")] // Combines to define the route template "Home"
[Route("Index")] // Combines to define route template "Home/Index"
[Route("/")] // Does not combine, defines the route template ""
public IActionResult Index() {}

}

Routes can be specified on [HttpGet] and similar attributes, avoiding the need to add separate [Route]
attributes. Attribute routes can also use tokens to reduce the need to repeat controller or action
names, as shown below:

[Route("[controller]™)]
public class ProductsController : Controller

{
[Route("")] // Matches 'Products’
[Route("Index")] // Matches 'Products/Index’
public IActionResult Index() {}

}

Razor Pages doesn't use attribute routing. You can specify additional route template information for a
Razor Page as part of its @page directive:

@page "{id:int}"

In the previous example, the page in question would match a route with an integer id parameter. For
example, the Products.cshtml page located in the root of /Pages would have this route:

"/Products/123"

Once a given request has been matched to a route, but before the action method is called, ASP.NET
Core MVC will perform model binding and model validation on the request. Model binding is
responsible for converting incoming HTTP data into the .NET types specified as parameters of the

42 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/aspnet/core/mvc/models/validation

action method to be called. For example, if the action method expects an int id parameter, model
binding will attempt to provide this parameter from a value provided as part of the request. To do so,
model binding looks for values in a posted form, values in the route itself, and query string values.
Assuming an id value is found, it will be converted to an integer before being passed into the action
method.

After binding the model but before calling the action method, model validation occurs. Model
validation uses optional attributes on the model type, and can help ensure that the provided model
object conforms to certain data requirements. Certain values may be specified as required, or limited
to a certain length or numeric range, etc. If validation attributes are specified but the model does not
conform to their requirements, the property ModelState.lsValid will be false, and the set of failing
validation rules will be available to send to the client making the request.

If you're using model validation, you should be sure to always check that the model is valid before
performing any state-altering commands, to ensure your app is not corrupted by invalid data. You can
use a filter to avoid the need to add code for this in every action. ASP.NET Core MVC filters offer a
way of intercepting groups of requests, so that common policies and cross-cutting concerns can be
applied on a targeted basis. Filters can be applied to individual actions, whole controllers, or globally
for an application.

For web APIs, ASP.NET Core MVC supports content negotiation, allowing requests to specify how
responses should be formatted. Based on headers provided in the request, actions returning data will
format the response in XML, JSON, or another supported format. This feature enables the same API to
be used by multiple clients with different data format requirements.

Web API projects should consider using the [ApiController] attribute, which can be applied to
individual controllers, to a base controller class, or to the entire assembly. This attribute adds
automatic model validation checking and any action with an invalid model will return a BadRequest
with the details of the validation errors. The attribute also requires all actions have an attribute route,
rather than using a conventional route, and returns more detailed ProblemDetails information in
response to errors.

References — Mapping Requests to Responses

. Routing to Controller Actions https://docs.microsoft.com/aspnet/core/mvc/controllers/routing

. Model Binding https://docs.microsoft.com/aspnet/core/mvc/models/model-binding

. Model Validation https://docs.microsoft.com/aspnet/core/mvc/models/validation

. Filters https://docs.microsoft.com/aspnet/core/mvc/controllers/filters

. ApiController Attribute https://docs.microsoft.com/aspnet/core/web-api/

Working with dependencies

ASP.NET Core has built-in support for and internally makes use of a technique known as dependency
injection. Dependency injection is a technique that enables loose coupling between different parts of
an application. Looser coupling is desirable because it makes it easier to isolate parts of the
application, allowing for testing or replacement. It also makes it less likely that a change in one part of

43 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/aspnet/core/mvc/models/formatting
https://docs.microsoft.com/aspnet/core/mvc/controllers/routing
https://docs.microsoft.com/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/aspnet/core/mvc/models/validation
https://docs.microsoft.com/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/aspnet/core/web-api/
https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection

the application will have an unexpected impact somewhere else in the application. Dependency
injection is based on the dependency inversion principle, and is often key to achieving the
open/closed principle. When evaluating how your application works with its dependencies, beware of
the static cling code smell, and remember the aphorism “new is glue.”

Static cling occurs when your classes make calls to static methods, or access static properties, which
have side effects or dependencies on infrastructure. For example, if you have a method that calls a
static method, which in turn writes to a database, your method is tightly coupled to the database.
Anything that breaks that database call will break your method. Testing such methods is notoriously
difficult, since such tests either require commercial mocking libraries to mock the static calls, or can
only be tested with a test database in place. Static calls that don't have any dependence on
infrastructure, especially those that are completely stateless, are fine to call and have no impact on
coupling or testability (beyond coupling code to the static call itself).

Many developers understand the risks of static cling and global state, but will still tightly couple their
code to specific implementations through direct instantiation. “New is glue” is meant to be a reminder
of this coupling, and not a general condemnation of the use of the new keyword. Just as with static
method calls, new instances of types that have no external dependencies typically do not tightly
couple code to implementation details or make testing more difficult. But each time a class is
instantiated, take just a brief moment to consider whether it makes sense to hard-code that specific
instance in that particular location, or if it would be a better design to request that instance as a
dependency.

Declare your dependencies

ASP.NET Core is built around having methods and classes declare their dependencies, requesting
them as arguments. ASP.NET applications are typically set up in a Startup class, which itself is
configured to support dependency injection at several points. If your Startup class has a constructor, it
can request dependencies through the constructor, like so:

public class Startup

{
public Startup(IHostingEnvironment env)
{
var builder = new ConfigurationBuilder()
.SetBasePath(env.ContentRootPath)
.AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
.AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);
}
}

The Startup class is interesting in that there are no explicit type requirements for it. It doesn’t inherit
from a special Startup base class, nor does it implement any particular interface. You can give it a
constructor, or not, and you can specify as many parameters on the constructor as you want. When
the web host you've configured for your application starts, it will call the Startup class you've told it to
use, and will use dependency injection to populate any dependencies the Startup class requires. Of
course, if you request parameters that aren't configured in the services container used by ASP.NET
Core, you'll get an exception, but as long as you stick to dependencies the container knows about,
you can request anything you want.

44 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://deviq.com/static-cling/
https://ardalis.com/new-is-glue

Dependency injection is built into your ASP.NET Core apps right from the start, when you create the
Startup instance. It doesn't stop there for the Startup class. You can also request dependencies in the
Configure method:

public void Configure(IApplicationBuilder app,
IHostingEnvironment env,
ILoggerFactory loggerFactory)

{
)

The ConfigureServices method is the exception to this behavior; it must take just one parameter of
type IServiceCollection. It doesn't really need to support dependency injection, since on the one hand
it is responsible for adding objects to the services container, and on the other it has access to all
currently configured services via the IServiceCollection parameter. Thus, you can work with
dependencies defined in the ASP.NET Core services collection in every part of the Startup class, either
by requesting the needed service as a parameter or by working with the IServiceCollection in
ConfigureServices.

Note

If you need to ensure certain services are available to your Startup class, you can configure them using
an IWebHostBuilder and its ConfigureServices method inside the CreateDefaultBuilder call.

The Startup class is a model for how you should structure other parts of your ASP.NET Core
application, from Controllers to Middleware to Filters to your own Services. In each case, you should
follow the Explicit Dependencies Principle, requesting your dependencies rather than directly creating
them, and leveraging dependency injection throughout your application. Be careful of where and how
you directly instantiate implementations, especially services and objects that work with infrastructure
or have side effects. Prefer working with abstractions defined in your application core and passed in as

arguments to hardcoding references to specific implementation types.

Structuring the application

Monolithic applications typically have a single entry point. In the case of an ASP.NET Core web
application, the entry point will be the ASP.NET Core web project. However, that doesn’t mean the
solution should consist of just a single project. It's useful to break up the application into different
layers in order to follow separation of concerns. Once broken up into layers, it's helpful to go beyond
folders to separate projects, which can help achieve better encapsulation. The best approach to
achieve these goals with an ASP.NET Core application is a variation of the Clean Architecture
discussed in chapter 5. Following this approach, the application’s solution will comprise separate
libraries for the Ul, Infrastructure, and ApplicationCore.

In addition to these projects, separate test projects are included as well (Testing is discussed in
Chapter 9).

The application’s object model and interfaces should be placed in the ApplicationCore project. This
project will have as few dependencies as possible, and the other projects in the solution will reference

45 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://deviq.com/explicit-dependencies-principle/

it. Business entities that need to be persisted are defined in the ApplicationCore project, as are
services that do not directly depend on infrastructure.

Implementation details, such as how persistence is performed or how notifications might be sent to a
user, are kept in the Infrastructure project. This project will reference implementation-specific
packages such as Entity Framework Core, but should not expose details about these implementations
outside of the project. Infrastructure services and repositories should implement interfaces that are
defined in the ApplicationCore project, and its persistence implementations are responsible for
retrieving and storing entities defined in ApplicationCore.

The ASP.NET Core Ul project is responsible for any Ul level concerns, but should not include business
logic or infrastructure details. In fact, ideally it shouldn’t even have a dependency on the Infrastructure
project, which will help ensure no dependency between the two projects is introduced accidentally.
This can be achieved using a third-party DI container like Autofac, which allows you to define DI rules
in Module classes in each project.

Another approach to decoupling the application from implementation details is to have the
application call microservices, perhaps deployed in individual Docker containers. This provides even
greater separation of concerns and decoupling than leveraging DI between two projects, but has
additional complexity.

Feature organization

By default, ASP.NET Core applications organize their folder structure to include Controllers and Views,
and frequently ViewModels. Client-side code to support these server-side structures is typically stored
separately in the wwwroot folder. However, large applications may encounter problems with this
organization, since working on any given feature often requires jumping between these folders. This
gets more and more difficult as the number of files and subfolders in each folder grows, resulting in a
great deal of scrolling through Solution Explorer. One solution to this problem is to organize
application code by feature instead of by file type. This organizational style is typically referred to as
feature folders or feature slices (see also: Vertical Slices).

ASP.NET Core MVC supports Areas for this purpose. Using areas, you can create separate sets of
Controllers and Views folders (as well as any associated models) in each Area folder. Figure 7-1 shows
an example folder structure, using Areas.

46 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/archive/msdn-magazine/2016/september/asp-net-core-feature-slices-for-asp-net-core-mvc
https://deviq.com/vertical-slices/

b &l wwwroot
4 fm] Areas
Ml Basket
M Blog
4] Catalog
B Controllers
viModels
4] Views
B Home
Ml Search
B Games
I+ ol Controllers
I+ ol Infrastructure
I Bl Pics
ba il Services
P ool ViewModels

4 E—l Views
P &l Account

Figure 7-1. Sample Area Organization

When using Areas, you must use attributes to decorate your controllers with the name of the area to
which they belong:

[Area("Catalog")]
public class HomeController

{}

You also need to add area support to your routes:

app.UseEndpoints(endpoints =>

endpoints.MapControllerRoute(name: "areaRoute", pattern:
"{area:exists}/{controller=Home}/{action=Index}/{id?}");
endpoints.MapControllerRoute(name: "default", pattern:
"{controller=Home}/{action=Index}/{id?}");
1)

In addition to the built-in support for Areas, you can also use your own folder structure, and
conventions in place of attributes and custom routes. This would allow you to have feature folders
that didn't include separate folders for Views, Controllers, etc., keeping the hierarchy flatter and
making it easier to see all related files in a single place for each feature.

ASP.NET Core uses built-in convention types to control its behavior. You can modify or replace these
conventions. For example, you can create a convention that will automatically get the feature name
for a given controller based on its namespace (which typically correlates to the folder in which the
controller is located):

public class FeatureConvention : IControllerModelConvention

{
public void Apply(ControllerModel controller)

{

controller.Properties.Add("feature",

47 CHAPTER 6 | Develop ASP.NET Core MVC apps

GetFeatureName(controller.ControllerType));

}
private string GetFeatureName(TypeInfo controllerType)
{
string[] tokens = controllerType.FullName.Split('.");
if (!tokens.Any(t => t == "Features")) return "";
string featureName = tokens
.SkipWhile(t => !t.Equals("features",
StringComparison.CurrentCultureIgnoreCase))
.Skip(1)
.Take(1)
.FirstOrDefault();
return featureName;
}

}

You then specify this convention as an option when you add support for MVC to your application in
ConfigureServices:

services.AddMvc(o => o.Conventions.Add(new FeatureConvention()));

ASP.NET Core MVC also uses a convention to locate views. You can override it with a custom
convention so that views will be located in your feature folders (using the feature name provided by
the FeatureConvention, above). You can learn more about this approach and download a working
sample from the MSDN Magazine article, Feature Slices for ASP.NET Core MVC.

Cross-cutting concerns

As applications grow, it becomes increasingly important to factor out cross-cutting concerns to
eliminate duplication and maintain consistency. Some examples of cross-cutting concerns in ASP.NET
Core applications are authentication, model validation rules, output caching, and error handling,
though there are many others. ASP.NET Core MVC filters allow you to run code before or after certain
steps in the request processing pipeline. For instance, a filter can run before and after model binding,
before and after an action, or before and after an action’s result. You can also use an authorization
filter to control access to the rest of the pipeline. Figures 7-2 shows how request execution flows
through filters, if configured.

48 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/archive/msdn-magazine/2016/september/asp-net-core-feature-slices-for-asp-net-core-mvc
https://docs.microsoft.com/aspnet/core/mvc/controllers/filters

Middleware +—

|

Authonzation filter

|

Resource filter

|

Exception filter

|

Medel binding

|

Action filter (before)

.‘_

Action execution

Bction filker (after)

|

Result filter —

v 1

Result execution

Figure 7-2. Request execution through filters and request pipeline.

Filters are usually implemented as attributes, so you can apply them to controllers or actions (or even
globally). When added in this fashion, filters specified at the action level override or build upon filters
specified at the controller level, which themselves override global filters. For example, the [Route]
attribute can be used to build up routes between controllers and actions. Likewise, authorization can
be configured at the controller level, and then overridden by individual actions, as the following
sample demonstrates:

[Authorize]
public class AccountController : Controller

{
[AllowAnonymous] // overrides the Authorize attribute
public async Task<IActionResult> Login() {}
public async Task<IActionResult> ForgotPassword() {}
}

The first method, Login, uses the AllowAnonymous filter (attribute) to override the Authorize filter set
at the controller level. The ForgotPassword action (and any other action in the class that doesn’t have
an AllowAnonymous attribute) will require an authenticated request.

Filters can be used to eliminate duplication in the form of common error handling policies for APIs.
For example, a typical API policy is to return a NotFound response to requests referencing keys that
do not exist, and a BadRequest response if model validation fails. The following example
demonstrates these two policies in action:

[HttpPut("{id}")]
public async Task<IActionResult> Put(int id, [FromBody]Author author)

49 CHAPTER 6 | Develop ASP.NET Core MVC apps

if ((await _authorRepository.ListAsync()).All(a => a.Id != id))

{
return NotFound(id);
}
if (!ModelState.IsValid)
{
return BadRequest(ModelState);
}

author.Id = id;
await _authorRepository.UpdateAsync(author);
return 0Ok();

3

Don't allow your action methods to become cluttered with conditional code like this. Instead, pull the
policies into filters that can be applied on an as-needed basis. In this example, the model validation
check, which should occur anytime a command is sent to the API, can be replaced by the following
attribute:

public class ValidateModelAttribute : ActionFilterAttribute

{
public override void OnActionExecuting(ActionExecutingContext context)
{
if (!context.ModelState.IsValid)
{
context.Result = new BadRequestObjectResult(context.ModelState);
}
}
}

You can add the ValidateModelAttribute to your project as a NuGet dependency by including the
Ardalis.ValidateModel package. For APIs, you can use the ApiController attribute to enforce this
behavior without the need for a separate ValidateModel filter.

Likewise, a filter can be used to check if a record exists and return a 404 before the action is executed,
eliminating the need to perform these checks in the action. Once you've pulled out common
conventions and organized your solution to separate infrastructure code and business logic from your
Ul, your MVC action methods should be extremely thin:

[HttpPut("{id}")]
[ValidateAuthorExists]
public async Task<IActionResult> Put(int id, [FromBody]Author author)
{
await _authorRepository.UpdateAsync(author);
return 0k();

}

You can read more about implementing filters and download a working sample from the MSDN
Magazine article, Real-World ASP.NET Core MVC Filters.

References — Structuring applications

. Areas
https://docs.microsoft.com/aspnet/core/mvc/controllers/areas

50 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://www.nuget.org/packages/Ardalis.ValidateModel
https://docs.microsoft.com/archive/msdn-magazine/2016/august/asp-net-core-real-world-asp-net-core-mvc-filters
https://docs.microsoft.com/aspnet/core/mvc/controllers/areas

. MSDN Magazine - Feature Slices for ASP.NET Core MVC
https://docs.microsoft.com/archive/msdn-magazine/2016/september/asp-net-core-feature-
slices-for-asp-net-core-mvc

. Filters
https://docs.microsoft.com/aspnet/core/mvc/controllers/filters

. MSDN Magazine — Real World ASP.NET Core MVC Filters
https://docs.microsoft.com/archive/msdn-magazine/2016/august/asp-net-core-real-world-asp-
net-core-mvc-filters

Security

Securing web applications is a large topic, with many considerations. At its most basic level, security
involves ensuring you know who a given request is coming from, and then ensuring that the request
only has access to resources it should. Authentication is the process of comparing credentials
provided with a request to those in a trusted data store, to see if the request should be treated as
coming from a known entity. Authorization is the process of restricting access to certain resources
based on user identity. A third security concern is protecting requests from eavesdropping by third
parties, for which you should at least ensure that SSL is used by your application.

Authentication

ASP.NET Core Identity is a membership system you can use to support login functionality for your
application. It has support for local user accounts as well as external login provider support from
providers like Microsoft Account, Twitter, Facebook, Google, and more. In addition to ASP.NET Core
Identity, your application can use windows authentication, or a third-party identity provider like

Identity Server.

ASP.NET Core Identity is included in new project templates if the Individual User Accounts option is
selected. This template includes support for registration, login, external logins, forgotten passwords,
and additional functionality.

51 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/archive/msdn-magazine/2016/september/asp-net-core-feature-slices-for-asp-net-core-mvc
https://docs.microsoft.com/archive/msdn-magazine/2016/september/asp-net-core-feature-slices-for-asp-net-core-mvc
https://docs.microsoft.com/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/archive/msdn-magazine/2016/august/asp-net-core-real-world-asp-net-core-mvc-filters
https://docs.microsoft.com/archive/msdn-magazine/2016/august/asp-net-core-real-world-asp-net-core-mvc-filters
https://docs.microsoft.com/aspnet/core/security/enforcing-ssl
https://github.com/IdentityServer/IdentityServer4

Create a new ASP.NET Core web application

“NETCUre = | | ASP.MET Core 3.1 -
G Empty Authentication
L
An empty Change Authentication X hts
E API Store user accounts in-app v | Learn more
A project ~ No Authentication Select this option to create a project that includes a local user accounts store,
This ternp =
(@ Individual User Accounts
1 Web Ap ps
@ () Work or School Accounts
A project port
() Windows Authentication
P Web AF . e
A project
Controlles Learn more about third-party open source authentication options '»

g Angular

A project template for creating an ASP.NET Core application with Angular

React.js Author: Microsoft
v Source: \NET Core 3.1.0

Get additicnal project templates

Figure 7-3. Select Individual User Accounts to have Identity preconfigured.

Identity support is configured in Startup, both in ConfigureServices and Configure:

public void ConfigureServices(IServiceCollection services)

{
// Add framework services.
services.AddDbContext<ApplicationDbContext>(options =>
options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));
services.AddIdentity<ApplicationUser, IdentityRole>()
.AddEntityFrameworkStores<ApplicationDbContext>()
.AddDefaultTokenProviders();
services.AddMvc();

}

public void Configure(IApplicationBuilder app)
{
app.UseStaticFiles();
app.UseIdentity();
app.UseEndpoints(endpoints =>

endpoints.MapControllerRoute(name: "default", pattern:
"{controller=Home}/{action=Index}/{id?}");
1
}

It's important that Useldentity appear before UseMvc in the Configure method. When configuring
Identity in ConfigureServices, you'll notice a call to AddDefaultTokenProviders. This has nothing to do

52 CHAPTER 6 | Develop ASP.NET Core MVC apps

with tokens that may be used to secure web communications, but instead refers to providers that
create prompts that can be sent to users via SMS or email in order for them to confirm their identity.

You can learn more about configuring two-factor authentication and enabling external login providers
from the official ASP.NET Core docs.

Authorization

The simplest form of authorization involves restricting access to anonymous users. This can be
achieved by simply applying the [Authorize] attribute to certain controllers or actions. If roles are
being used, the attribute can be further extended to restrict access to users who belong to certain
roles, as shown:

[Authorize(Roles = "HRManager,Finance")]
public class SalaryController : Controller
{

}

In this case, users belonging to either the HRManager or Finance roles (or both) would have access to
the SalaryController. To require that a user belong to multiple roles (not just one of several), you can
apply the attribute multiple times, specifying a required role each time.

Specifying certain sets of roles as strings in many different controllers and actions can lead to
undesirable repetition. You can configure authorization policies, which encapsulate authorization
rules, and then specify the policy instead of individual roles when applying the [Authorize] attribute:

[Authorize(Policy = "CanViewPrivateReport")]
public IActionResult ExecutiveSalaryReport()

{
s

return View();

Using policies in this way, you can separate the kinds of actions being restricted from the specific roles
or rules that apply to it. Later, if you create a new role that needs to have access to certain resources,
you can just update a policy, rather than updating every list of roles on every [Authorize] attribute.

Claims

Claims are name value pairs that represent properties of an authenticated user. For example, you
might store users’ employee number as a claim. Claims can then be used as part of authorization
policies. You could create a policy called “"EmployeeOnly” that requires the existence of a claim called
"EmployeeNumber”, as shown in this example:

public void ConfigureServices(IServiceCollection services)

{
services.AddMvc();
services.AddAuthorization(options =>
{
options.AddPolicy("EmployeeOnly", policy => policy.RequireClaim("EmployeeNumber™));
1
}

53 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/aspnet/core/security/authentication/social/

This policy could then be used with the [Authorize] attribute to protect any controller and/or action,
as described above.
Securing web APIs

Most web APIs should implement a token-based authentication system. Token authentication is
stateless and designed to be scalable. In a token-based authentication system, the client must first
authenticate with the authentication provider. If successful, the client is issued a token, which is simply
a cryptographically meaningful string of characters. When the client then needs to issue a request to
an API, it adds this token as a header on the request. The server then validates the token found in the
request header before completing the request. Figure 7-4 demonstrates this process.

Token-Based Authentication

. Password Password

User

Web Client

SPA Application

Request

Resource

Figure 7-4. Token-based authentication for Web APIs.

You can create your own authentication service, integrate with Azure AD and OAuth, or implement a
service using an open-source tool like IdentityServer.

Custom Security

Be especially careful about “rolling your own"” implementation of cryptography, user membership, or
token generation system. There are many commercial and open-source alternatives available, which
will almost certainly have better security than a custom implementation.

References — Security

. Security Docs Overview
https://docs.microsoft.com/aspnet/core/security/

54 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://github.com/IdentityServer
https://docs.microsoft.com/aspnet/core/security/

. Enforcing SSL in an ASP.NET Core App
https://docs.microsoft.com/aspnet/core/security/enforcing-ssl

. Introduction to Identity
https://docs.microsoft.com/aspnet/core/security/authentication/identity

. Introduction to Authorization
https://docs.microsoft.com/aspnet/core/security/authorization/introduction

. Authentication and Authorization for APl Apps in Azure App Service
https://docs.microsoft.com/azure/app-service-api/app-service-api-authentication

. Identity Server
https://github.com/IdentityServer

Client communication

In addition to serving pages and responding to requests for data via web APIs, ASP.NET Core apps can
communicate directly with connected clients. This outbound communication can use a variety of
transport technologies, the most common being WebSockets. ASP.NET Core SignalR is a library that
makes it simple to add real-time server-to-client communication functionality to your applications.
SignalR supports a variety of transport technologies, including WebSockets, and abstracts away many
of the implementation details from the developer.

Real-time client communication, whether using WebSockets directly or other techniques, are useful in
a variety of application scenarios. Some examples include:

. Live chat room applications

. Monitoring applications

. Job progress updates

. Notifications

. Interactive forms applications

When building client communication into your applications, there are typically two components:
. Server-side connection manager (SignalR Hub, WebSocketManager WebSocketHandler)

. Client-side library

Clients aren’t limited to browsers — mobile apps, console apps, and other native apps can also
communicate using SignalR/WebSockets. The following simple program echoes all content sent to a
chat application to the console, as part of a WebSocketManager sample application:

public class Program

{

private static Connection _connection;
public static void Main(string[] args)

{

StartConnectionAsync();
_connection.On("receiveMessage", (arguments) =>

{

55 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/aspnet/core/security/enforcing-ssl
https://docs.microsoft.com/aspnet/core/security/authentication/identity
https://docs.microsoft.com/aspnet/core/security/authorization/introduction
https://docs.microsoft.com/azure/app-service-api/app-service-api-authentication
https://github.com/IdentityServer

Console.WriteLine($"{arguments[@0]} said: {arguments[1]}");
1

Console.ReadLine();
StopConnectionAsync();

}
public static async Task StartConnectionAsync()
{
_connection = new Connection();
await _connection.StartConnectionAsync("ws://localhost:65110/chat");
}
public static async Task StopConnectionAsync()
{
await _connection.StopConnectionAsync();
}

}

Consider ways in which your applications communicate directly with client applications, and consider
whether real-time communication would improve your app's user experience.

References — Client Communication

. ASP.NET Core SignalR
https://github.com/dotnet/aspnetcore/tree/master/src/SignalR

. WebSocket Manager
https://github.com/radu-matei/websocket-manager

Domain-driven design — Should you apply it?

Domain-Driven Design (DDD) is an agile approach to building software that emphasizes focusing on
the business domain. It places a heavy emphasis on communication and interaction with business
domain expert(s) who can relate to the developers how the real-world system works. For example, if
you're building a system that handles stock trades, your domain expert might be an experienced stock
broker. DDD is designed to address large, complex business problems, and is often not appropriate
for smaller, simpler applications, as the investment in understanding and modeling the domain is not
worth it.

When building software following a DDD approach, your team (including non-technical stakeholders
and contributors) should develop a ubiquitous language for the problem space. That is, the same
terminology should be used for the real-world concept being modeled, the software equivalent, and
any structures that might exist to persist the concept (for example, database tables). Thus, the
concepts described in the ubiquitous language should form the basis for your domain model.

Your domain model comprises objects that interact with one another to represent the behavior of the
system. These objects may fall into the following categories:

. Entities, which represent objects with a thread of identity. Entities are typically stored in
persistence with a key by which they can later be retrieved.

. Aggregates, which represent groups of objects that should be persisted as a unit.

56 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://github.com/dotnet/aspnetcore/tree/master/src/SignalR
https://github.com/radu-matei/websocket-manager
https://deviq.com/entity/
https://deviq.com/aggregate-pattern/

. Value objects, which represent concepts that can be compared on the basis of the sum of their
property values. For example, DateRange consisting of a start and end date.

. Domain events, which represent things happening within the system that are of interest to other
parts of the system.

A DDD domain model should encapsulate complex behavior within the model. Entities, in particular,
should not merely be collections of properties. When the domain model lacks behavior and merely
represents the state of the system, it is said to be an anemic model, which is undesirable in DDD.

In addition to these model types, DDD typically employs a variety of patterns:

. Repository, for abstracting persistence details.

. Factory, for encapsulating complex object creation.

. Domain events, for decoupling dependent behavior from triggering behavior.

. Services, for encapsulating complex behavior and/or infrastructure implementation details.
. Command, for decoupling issuing commands and executing the command itself.

. Specification, for encapsulating query details.

DDD also recommends the use of the Clean Architecture discussed previously, allowing for loose
coupling, encapsulation, and code that can easily be verified using unit tests.

When should you apply DDD

DDD is well suited to large applications with significant business (not just technical) complexity. The
application should require the knowledge of domain experts. There should be significant behavior in
the domain model itself, representing business rules and interactions beyond simply storing and
retrieving the current state of various records from data stores.

When shouldn’t you apply DDD

DDD involves investments in modeling, architecture, and communication that may not be warranted
for smaller applications or applications that are essentially just CRUD (create/read/update/delete). If
you choose to approach your application following DDD, but find that your domain has an anemic
model with no behavior, you may need to rethink your approach. Either your application may not
need DDD, or you may need assistance refactoring your application to encapsulate business logic in
the domain model, rather than in your database or user interface.

A hybrid approach would be to only use DDD for the transactional or more complex areas of the
application, but not for simpler CRUD or read-only portions of the application. For instance, you don't
need the constraints of an Aggregate if you're querying data to display a report or to visualize data
for a dashboard. It's perfectly acceptable to have a separate, simpler read model for such
requirements.

57 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://deviq.com/value-object/
https://martinfowler.com/eaaDev/DomainEvent.html
https://deviq.com/anemic-model/
https://deviq.com/repository-pattern/
https://en.wikipedia.org/wiki/Factory_method_pattern
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
https://en.wikipedia.org/wiki/Command_pattern
https://deviq.com/specification-pattern/

References — Domain-Driven Design

. DDD in Plain English (StackOverflow Answer)
https://stackoverflow.com/questions/1222392/can-someone-explain-domain-driven-design-
ddd-in-plain-english-please/1222488#1222488

Deployment

There are a few steps involved in the process of deploying your ASP.NET Core application, regardless
of where it will be hosted. The first step is to publish the application, which can be done using the
dotnet publish CLI command. This will compile the application and place all of the files needed to
run the application into a designated folder. When you deploy from Visual Studio, this step is
performed for you automatically. The publish folder contains .exe and .dll files for the application and
its dependencies. A self-contained application will also include a version of the .NET runtime. ASP.NET
Core applications will also include configuration files, static client assets, and MVC views.

ASP.NET Core applications are console applications that must be started when the server boots and
restarted if the application (or server) crashes. A process manager can be used to automate this
process. The most common process managers for ASP.NET Core are Nginx and Apache on Linux and
[IS or Windows Service on Windows.

In addition to a process manager, ASP.NET Core applications may use a reverse proxy server. A
reverse proxy server receives HTTP requests from the Internet and forwards them to Kestrel after
some preliminary handling. Reverse proxy servers provide a layer of security for the application.
Kestrel also doesn't support hosting multiple applications on the same port, so techniques like host
headers cannot be used with it to enable hosting multiple applications on the same port and IP
address.

Reverse proxy server: ASFP.NET Core application
Internet
e “‘5 HTTP IS, Mginx, Apache HTTP Kestrel HttpContext Application code
(. Je—> « m «

Figure 7-5. ASP.NET hosted in Kestrel behind a reverse proxy server

Another scenario in which a reverse proxy can be helpful is to secure multiple applications using
SSL/HTTPS. In this case, only the reverse proxy would need to have SSL configured. Communication
between the reverse proxy server and Kestrel could take place over HTTP, as shown in Figure 7-6.

Reverse proxy server: ASF.NET Core application
Internet
e HTTPS IS, Nginx, Apache HTTP Kestrel HitpContext ~ Application code
(. Je— > [) B

Figure 7-6. ASP.NET hosted behind an HTTPS-secured reverse proxy server

An increasingly popular approach is to host your ASP.NET Core application in a Docker container,
which then can be hosted locally or deployed to Azure for cloud-based hosting. The Docker container

58 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://stackoverflow.com/questions/1222392/can-someone-explain-domain-driven-design-ddd-in-plain-english-please/1222488#1222488
https://stackoverflow.com/questions/1222392/can-someone-explain-domain-driven-design-ddd-in-plain-english-please/1222488#1222488

could contain your application code, running on Kestrel, and would be deployed behind a reverse
proxy server, as shown above.

If you're hosting your application on Azure, you can use Microsoft Azure Application Gateway as a
dedicated virtual appliance to provide several services. In addition to acting as a reverse proxy for
individual applications, Application Gateway can also offer the following features:

. HTTP load balancing

. SSL offload (SSL only to Internet)

. End to End SSL

. Multi-site routing (consolidate up to 20 sites on a single Application Gateway)
. Web application firewall

. Websocket support

. Advanced diagnostics

Learn more about Azure deployment options in Chapter 10.

References — Deployment

. Hosting and Deployment Overview
https://docs.microsoft.com/aspnet/core/publishing/

. When to use Kestrel with a reverse proxy
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#when-to-use-kestrel-
with-a-reverse-proxy

. Host ASP.NET Core apps in Docker
https://docs.microsoft.com/aspnet/core/publishing/docker

. Introducing Azure Application Gateway
https://docs.microsoft.com/azure/application-gateway/application-gateway-introduction

59 CHAPTER 6 | Develop ASP.NET Core MVC apps

https://docs.microsoft.com/aspnet/core/publishing/
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#when-to-use-kestrel-with-a-reverse-proxy
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel#when-to-use-kestrel-with-a-reverse-proxy
https://docs.microsoft.com/aspnet/core/publishing/docker
https://docs.microsoft.com/azure/application-gateway/application-gateway-introduction

CHAPTER ;

Working with Data in
ASP.NET Core Apps

"Data is a precious thing and will last longer than the systems themselves.”

Tim Berners-Lee

Data access is an important part of almost any software application. ASP.NET Core supports a variety
of data access options, including Entity Framework Core (and Entity Framework 6 as well), and can
work with any .NET data access framework. The choice of which data access framework to use
depends on the application’s needs. Abstracting these choices from the ApplicationCore and Ul
projects, and encapsulating implementation details in Infrastructure, helps to produce loosely
coupled, testable software.

Entity Framework Core (for relational databases)

If you're writing a new ASP.NET Core application that needs to work with relational data, then Entity
Framework Core (EF Core) is the recommended way for your application to access its data. EF Core is
an object-relational mapper (O/RM) that enables .NET developers to persist objects to and from a
data source. It eliminates the need for most of the data access code developers would typically need
to write. Like ASP.NET Core, EF Core has been rewritten from the ground up to support modular
cross-platform applications. You add it to your application as a NuGet package, configure it in Startup,
and request it through dependency injection wherever you need it.

To use EF Core with a SQL Server database, run the following dotnet CLI command:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer |

To add support for an InMemory data source, for testing:

dotnet add package Microsoft.EntityFrameworkCore.InMemory |

The DbContext

To work with EF Core, you need a subclass of DbContext. This class holds properties representing
collections of the entities your application will work with. The eShopOnWeb sample includes a
CatalogContext with collections for items, brands, and types:

60 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontext

public class CatalogContext : DbContext

{
public CatalogContext(DbContextOptions<CatalogContext> options) : base(options)
{

}

public DbSet<CatalogItem> CatalogItems { get; set; }
public DbSet<CatalogBrand> CatalogBrands { get; set; }

public DbSet<CatalogType> CatalogTypes { get; set; }
}

Your DbContext must have a constructor that accepts DbContextOptions and pass this argument to
the base DbContext constructor. If you have only one DbContext in your application, you can pass an
instance of DbContextOptions, but if you have more than one you must use the generic
DbContextOptions<T> type, passing in your DbContext type as the generic parameter.

Configuring EF Core

In your ASP.NET Core application, you'll typically configure EF Core in your ConfigureServices method.
EF Core uses a DbContextOptionsBuilder, which supports several helpful extension methods to
streamline its configuration. To configure CatalogContext to use a SQL Server database with a
connection string defined in Configuration, you would add the following code to ConfigureServices:

services.AddDbContext<CatalogContext>(options => options.UseSqlServer
(Configuration.GetConnectionString("DefaultConnection")));

To use the in-memory database:

services.AddDbContext<CatalogContext>(options =>
options.UseInMemoryDatabase());

Once you have installed EF Core, created a DbContext child type, and configured it in
ConfigureServices, you are ready to use EF Core. You can request an instance of your DbContext type
in any service that needs it, and start working with your persisted entities using LINQ as if they were
simply in a collection. EF Core does the work of translating your LINQ expressions into SQL queries to
store and retrieve your data.

You can see the queries EF Core is executing by configuring a logger and ensuring its level is set to at
least Information, as shown in Figure 8-1.

61 CHAPTER 7 | Working with Data in ASP.NET Core Apps

B C:\Program Files\dotnet\dotnet.exe — [m| *

) - Model]

Figure 8-1. Logging EF Core queries to the console

Fetching and storing Data

To retrieve data from EF Core, you access the appropriate property and use LINQ to filter the result.
You can also use LINQ to perform projection, transforming the result from one type to another. The
following example would retrieve CatalogBrands, ordered by name, filtered by their Enabled property,
and projected onto a SelectListltem type:

var brandItems = await _context.CatalogBrands
.Where(b => b.Enabled)
.OrderBy(b => b.Name)
.Select(b => new SelectListItem {
Value = b.Id, Text = b.Name })
.ToListAsync();

It's important in the above example to add the call to ToListAsync in order to execute the query
immediately. Otherwise, the statement will assign an IQueryable<SelectListitem> to brandltems,
which will not be executed until it is enumerated. There are pros and cons to returning IQueryable
results from methods. It allows the query EF Core will construct to be further modified, but can also
result in errors that only occur at runtime, if operations are added to the query that EF Core cannot
translate. It's generally safer to pass any filters into the method performing the data access, and return
back an in-memory collection (for example, List<T>) as the result.

EF Core tracks changes on entities it fetches from persistence. To save changes to a tracked entity, you
just call the SaveChanges method on the DbContext, making sure it's the same DbContext instance
that was used to fetch the entity. Adding and removing entities is directly done on the appropriate
DbSet property, again with a call to SaveChanges to execute the database commands. The following
example demonstrates adding, updating, and removing entities from persistence.

// create
var newBrand = new CatalogBrand() { Brand = "Acme" };

62 CHAPTER 7 | Working with Data in ASP.NET Core Apps

_context.Add(newBrand);
await _context.SaveChangesAsync();

// read and update

var existingBrand = _context.CatalogBrands.Find(1);
existingBrand.Brand = "Updated Brand";

await _context.SaveChangesAsync();

// read and delete (alternate Find syntax)

var brandToDelete = _context.Find<CatalogBrand>(2);
_context.CatalogBrands.Remove(brandToDelete);

await _context.SaveChangesAsync();

EF Core supports both synchronous and async methods for fetching and saving. In web applications,
it's recommended to use the async/await pattern with the async methods, so that web server threads
are not blocked while waiting for data access operations to complete.

Fetching related data

When EF Core retrieves entities, it populates all of the properties that are stored directly with that
entity in the database. Navigation properties, such as lists of related entities, are not populated and
may have their value set to null. This ensures EF Core is not fetching more data than is needed, which
is especially important for web applications, which must quickly process requests and return
responses in an efficient manner. To include relationships with an entity using eager loading, you
specify the property using the Include extension method on the query, as shown:

// .Include requires using Microsoft.EntityFrameworkCore
var brandsWithItems = await _context.CatalogBrands
.Include(b => b.Items)
.ToListAsync();

You can include multiple relationships, and you can also include subrelationships using Theninclude.
EF Core will execute a single query to retrieve the resulting set of entities. Alternately you can include
navigation properties of navigation properties by passing a ".-separated string to the .Include()
extension method, like so:

.Include("Items.Products")

In addition to encapsulating filtering logic, a specification can specify the shape of the data to be
returned, including which properties to populate. The eShopOnWeb sample includes several
specifications that demonstrate encapsulating eager loading information within the specification. You
can see how the specification is used as part of a query here:

// Includes all expression-based includes
query = specification.Includes.Aggregate(query,
(current, include) => current.Include(include));

// Include any string-based include statements
query = specification.IncludeStrings.Aggregate(query,
(current, include) => current.Include(include));

Another option for loading related data is to use explicit loading. Explicit loading allows you to load
additional data into an entity that has already been retrieved. Since this involves a separate request to

63 CHAPTER 7 | Working with Data in ASP.NET Core Apps

the database, it's not recommended for web applications, which should minimize the number of
database round trips made per request.

Lazy loading is a feature that automatically loads related data as it is referenced by the application. EF
Core has added support for lazy loading in version 2.1. Lazy loading is not enabled by default and
requires installing the Microsoft.EntityFrameworkCore.Proxies. As with explicit loading, lazy
loading should typically be disabled for web applications, since its use will result in additional
database queries being made within each web request. Unfortunately, the overhead incurred by lazy
loading often goes unnoticed at development time, when latency is small and often the data sets used
for testing are small. However, in production, with more users, more data, and more latency, the
additional database requests can often result in poor performance for web applications that make
heavy use of lazy loading.

Avoid Lazy Loading Entities in Web Applications

Encapsulating data

EF Core supports several features that allow your model to properly encapsulate its state. A common
problem in domain models is that they expose collection navigation properties as publicly accessible
list types. This allows any collaborator to manipulate the contents of these collection types, which may
bypass important business rules related to the collection, possibly leaving the object in an invalid
state. The solution to this is to expose read-only access to related collections, and explicitly provide
methods defining ways in which clients can manipulate them, as in this example:

public class Basket : BaseEntity

{
public string BuyerId { get; set; }
private readonly List<BasketItem> _items = new List<BasketItem>();
public IReadOnlyCollection<BasketItem> Items => _items.AsReadOnly();
public void AddItem(int catalogItemId, decimal unitPrice, int quantity = 1)
{
if (!Items.Any(i => i.CatalogItemId == catalogItemId))
{
_items.Add(new BasketItem()
{
CatalogItemId = catalogItemId,
Quantity = quantity,
UnitPrice = unitPrice
1
return;
}
var existingItem = Items.FirstOrDefault(i => i.CatalogItemId == catalogItemId);
existingItem.Quantity += quantity;
}
}

This entity type doesn't expose a public List or ICollection property, but instead exposes an
IReadOnlyCollection type that wraps the underlying List type. When using this pattern, you can
indicate to Entity Framework Core to use the backing field like so:

private void ConfigureBasket(EntityTypeBuilder<Basket> builder)
{

64 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://ardalis.com/avoid-lazy-loading-entities-in-asp-net-applications

var navigation = builder.Metadata.FindNavigation(nameof(Basket.Items));

navigation.SetPropertyAccessMode(PropertyAccessMode.Field);

}

Another way in which you can improve your domain model is through the use of value objects for
types that lack identity and are only distinguished by their properties. Using such types as properties
of your entities can help keep logic specific to the value object where it belongs, and can avoid
duplicate logic between multiple entities that use the same concept. In Entity Framework Core, you
can persist value objects in the same table as their owning entity by configuring the type as an owned
entity, like so:

private void ConfigureOrder(EntityTypeBuilder<Order> builder)
{

}

builder.OwnsOne(o => o.ShipToAddress);

In this example, the ShipToAddress property is of type Address. Address is a value object with several
properties such as Street and City. EF Core maps the Order object to its table with one column per
Address property, prefixing each column name with the name of the property. In this example, the
order table would include columns such as ShipToAddress_Street and ShipToAddress_City. It's
also possible to store owned types in separate tables, if desired.

Learn more about owned entity support in EF Core.

Resilient connections

External resources like SQL databases may occasionally be unavailable. In cases of temporary
unavailability, applications can use retry logic to avoid raising an exception. This technique is
commonly referred to as connection resiliency. You can implement your own retry with exponential
backoff technique by attempting to retry with an exponentially increasing wait time, until a maximum
retry count has been reached. This technique embraces the fact that cloud resources might

intermittently be unavailable for short periods of time, resulting in failure of some requests.

For Azure SQL DB, Entity Framework Core already provides internal database connection resiliency
and retry logic. But you need to enable the Entity Framework execution strategy for each DbContext
connection if you want to have resilient EF Core connections.

For instance, the following code at the EF Core connection level enables resilient SQL connections that
are retried if the connection fails.

// Startup.cs from any ASP.NET Core Web API
public class Startup

{

public IServiceProvider ConfigureServices(IServiceCollection services)

{
Il oo
services.AddDbContext<OrderingContext>(options =>

{
options.UseSqlServer(Configuration["ConnectionString"],
sqlServerOptionsAction: sqlOptions =>

sqlOptions.EnableRetryOnFailure(

65 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://docs.microsoft.com/ef/core/modeling/owned-entities
https://docs.microsoft.com/azure/architecture/patterns/retry
https://docs.microsoft.com/azure/architecture/patterns/retry

maxRetryCount: 5,
maxRetryDelay: TimeSpan.FromSeconds(30),
errorNumbersToAdd: null);
})s
1
}

flooc

Execution strategies and explicit transactions using BeginTransaction and multiple
DbContexts

When retries are enabled in EF Core connections, each operation you perform using EF Core becomes
its own retryable operation. Each query and each call to SaveChanges will be retried as a unit if a
transient failure occurs.

However, if your code initiates a transaction using BeginTransaction, you are defining your own group
of operations that need to be treated as a unit; everything inside the transaction has to be rolled back
if a failure occurs. You will see an exception like the following if you attempt to execute that
transaction when using an EF execution strategy (retry policy) and you include several SaveChanges
from multiple DbContexts in it.

System.InvalidOperationException: The configured execution strategy
'SqlServerRetryingExecutionStrategy’ does not support user initiated transactions. Use the execution
strategy returned by ‘DbContext.Database.CreateExecutionStrategy()' to execute all the operations in
the transaction as a retryable unit.

The solution is to manually invoke the EF execution strategy with a delegate representing everything
that needs to be executed. If a transient failure occurs, the execution strategy will invoke the delegate
again. The following code shows how to implement this approach:

// Use of an EF Core resiliency strategy when using multiple DbContexts
// within an explicit transaction
// See:
// https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency
var strategy = _catalogContext.Database.CreateExecutionStrategy();
await strategy.ExecuteAsync(async () =>
{
// Achieving atomicity between original Catalog database operation and the
// IntegrationEventLog thanks to a local transaction
using (var transaction = _catalogContext.Database.BeginTransaction())
{
_catalogContext.CatalogItems.Update(catalogItem);
await _catalogContext.SaveChangesAsync();

// Save to EventLog only if product price changed
if (raiseProductPriceChangedEvent)
await _integrationEventLogService.SaveEventAsync(priceChangedEvent);
transaction.Commit();
}
})s

The first DbContext is the _catalogContext and the second DbContext is within the
_integrationEventLogService object. Finally, the Commit action would be performed multiple
DbContexts and using an EF Execution Strategy.

66 CHAPTER 7 | Working with Data in ASP.NET Core Apps

References — Entity Framework Core

. EF Core Docs https://docs.microsoft.com/ef/

. EF Core: Related Data https://docs.microsoft.com/ef/core/querying/related-data

. Avoid Lazy Loading Entities in ASPNET Applications https://ardalis.com/avoid-lazy-loading-
entities-in-asp-net-applications

EF Core or micro-ORM?

While EF Core is a great choice for managing persistence, and for the most part encapsulates
database details from application developers, it isn't the only choice. Another popular open-source
alternative is Dapper, a so-called micro-ORM. A micro-ORM is a lightweight, less full-featured tool for
mapping objects to data structures. In the case of Dapper, its design goals focus on performance,
rather than fully encapsulating the underlying queries it uses to retrieve and update data. Because it
doesn’t abstract SQL from the developer, Dapper is “closer to the metal” and lets developers write the
exact queries they want to use for a given data access operation.

EF Core has two significant features it provides which separate it from Dapper but also add to its
performance overhead. The first is translation from LINQ expressions into SQL. These translations are
cached, but even so there is overhead in performing them the first time. The second is change
tracking on entities (so that efficient update statements can be generated). This behavior can be
turned off for specific queries by using the AsNotTracking extension. EF Core also generates SQL
queries that usually are very efficient and in any case perfectly acceptable from a performance
standpoint, but if you need fine control over the precise query to be executed, you can pass in custom
SQL (or execute a stored procedure) using EF Core, too. In this case, Dapper still outperforms EF Core,
but only slightly. Julie Lerman presents some performance data in her May 2016 MSDN article Dapper
Entity Framework, and Hybrid Apps. Additional performance benchmark data for a variety of data
access methods can be found on the Dapper site.

To see how the syntax for Dapper varies from EF Core, consider these two versions of the same
method for retrieving a list of items:

// EF Core
private readonly CatalogContext _context;
public async Task<IEnumerable<CatalogType>> GetCatalogTypes()

{

return await _context.CatalogTypes.ToListAsync();
}
// Dapper

private readonly SqlConnection _conn;
public async Task<IEnumerable<CatalogType>> GetCatalogTypesWithDapper()

{
}

return await _conn.QueryAsync<CatalogType>("SELECT * FROM CatalogType");

If you need to build more complex object graphs with Dapper, you need to write the associated
queries yourself (as opposed to adding an Include as you would in EF Core). This is supported through
a variety of syntaxes, including a feature called Multi Mapping that lets you map individual rows to

67 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://docs.microsoft.com/ef/
https://docs.microsoft.com/ef/core/querying/related-data
https://ardalis.com/avoid-lazy-loading-entities-in-asp-net-applications
https://ardalis.com/avoid-lazy-loading-entities-in-asp-net-applications
https://github.com/StackExchange/Dapper
https://docs.microsoft.com/archive/msdn-magazine/2016/may/data-points-dapper-entity-framework-and-hybrid-apps
https://docs.microsoft.com/archive/msdn-magazine/2016/may/data-points-dapper-entity-framework-and-hybrid-apps
https://github.com/StackExchange/Dapper

multiple mapped objects. For example, given a class Post with a property Owner of type User, the
following SQL would return all of the necessary data:

select * from #Posts p
left join #Users u on u.Id = p.OwnerId
Order by p.Id

Each returned row includes both User and Post data. Since the User data should be attached to the
Post data via its Owner property, the following function is used:

(post, user) => { post.Owner = user; return post; }

The full code listing to return a collection of posts with their Owner property populated with the
associated user data would be:

var sql = @"select * from #Posts p

left join #Users u on u.Id = p.OwnerId

Order by p.Id";

var data = connection.Query<Post, User, Post>(sql,
(post, user) => { post.Owner = user; return post;});

Because it offers less encapsulation, Dapper requires developers know more about how their data is
stored, how to query it efficiently, and write more code to fetch it. When the model changes, instead
of simply creating a new migration (another EF Core feature), and/or updating mapping information
in one place in a DbContext, every query that is impacted must be updated. These queries have no
compile-time guarantees, so they may break at run time in response to changes to the model or
database, making errors more difficult to detect quickly. In exchange for these tradeoffs, Dapper
offers extremely fast performance.

For most applications, and most parts of almost all applications, EF Core offers acceptable
performance. Thus, its developer productivity benefits are likely to outweigh its performance
overhead. For queries that can benefit from caching, the actual query may only be executed a tiny
percentage of the time, making relatively small query performance differences moot.

SQL or NoSQL

Traditionally, relational databases like SQL Server have dominated the marketplace for persistent data
storage, but they are not the only solution available. NoSQL databases like MongoDB offer a different
approach to storing objects. Rather than mapping objects to tables and rows, another option is to
serialize the entire object graph, and store the result. The benefits of this approach, at least initially,
are simplicity and performance. It's simpler to store a single serialized object with a key than to
decompose the object into many tables with relationships and update and rows that may have
changed since the object was last retrieved from the database. Likewise, fetching and deserializing a
single object from a key-based store is typically much faster and easier than complex joins or multiple
database queries required to fully compose the same object from a relational database. The lack of
locks or transactions or a fixed schema also makes NoSQL databases amenable to scaling across many
machines, supporting very large datasets.

68 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://www.mongodb.com/what-is-mongodb

On the other hand, NoSQL databases (as they are typically called) have their drawbacks. Relational
databases use normalization to enforce consistency and avoid duplication of data. This reduces the
total size of the database and ensures that updates to shared data are available immediately
throughout the database. In a relational database, an Address table might reference a Country table
by ID, such that if the name of a country/region were changed, the address records would benefit
from the update without themselves having to be updated. However, in a NoSQL database, Address
and its associated Country might be serialized as part of many stored objects. An update to a
country/region name would require all such objects to be updated, rather than a single row.
Relational databases can also ensure relational integrity by enforcing rules like foreign keys. NoSQL
databases typically do not offer such constraints on their data.

Another complexity NoSQL databases must deal with is versioning. When an object’s properties
change, it may not be able to be deserialized from past versions that were stored. Thus, all existing
objects that have a serialized (previous) version of the object must be updated to conform to its new
schema. This is not conceptually different from a relational database, where schema changes
sometimes require update scripts or mapping updates. However, the number of entries that must be
modified is often much greater in the NoSQL approach, because there is more duplication of data.

It's possible in NoSQL databases to store multiple versions of objects, something fixed schema
relational databases typically do not support. However, in this case your application code will need to
account for the existence of previous versions of objects, adding additional complexity.

NoSQL databases typically do not enforce ACID, which means they have both performance and
scalability benefits over relational databases. They're well suited to extremely large datasets and
objects that are not well suited to storage in normalized table structures. There is no reason why a
single application cannot take advantage of both relational and NoSQL databases, using each where it
is best suited.

Azure Cosmos DB

Azure Cosmos DB is a fully managed NoSQL database service that offers cloud-based schema-free
data storage. Azure Cosmos DB is built for fast and predictable performance, high availability, elastic
scaling, and global distribution. Despite being a NoSQL database, developers can use rich and familiar
SQL query capabilities on JSON data. All resources in Azure Cosmos DB are stored as JSON
documents. Resources are managed as items, which are documents containing metadata, and feeds,
which are collections of items. Figure 8-2 shows the relationship between different Azure Cosmos DB
resources.

69 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://en.wikipedia.org/wiki/ACID

L {) af 00

Azure Cosmos DB Database Collections Documents Attachments
Account /dbs/id} feolls{id} /docs/{id} fattachments/id}

Al —
Usersl Stored Procedures
fusers/{id} fsprocs/lid}
.p
ad —
Permissions Triggers
/permissions/{id} ftriggers/{id}
L
| —

User Defined Functions
ffunctions/Aid}

Figure 8-2. Azure Cosmos DB resource organization.

The Azure Cosmos DB query language is a simple yet powerful interface for querying JSON
documents. The language supports a subset of ANSI SQL grammar and adds deep integration of
JavaScript object, arrays, object construction, and function invocation.

References — Azure Cosmos DB

. Azure Cosmos DB Introduction https://docs.microsoft.com/azure/cosmos-db/introduction

Other persistence options

In addition to relational and NoSQL storage options, ASP.NET Core applications can use Azure
Storage to store a variety of data formats and files in a cloud-based, scalable fashion. Azure Storage is
massively scalable, so you can start out storing small amounts of data and scale up to storing
hundreds or terabytes if your application requires it. Azure Storage supports four kinds of data:

. Blob Storage for unstructured text or binary storage, also referred to as object storage.
. Table Storage for structured datasets, accessible via row keys.
. Queue Storage for reliable queue-based messaging.

. File Storage for shared file access between Azure virtual machines and on-premises applications.

70 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://docs.microsoft.com/azure/cosmos-db/introduction

References — Azure Storage

. Azure Storage Introduction https://docs.microsoft.com/azure/storage/common/storage-
introduction

Caching

In web applications, each web request should be completed in the shortest time possible. One way to
achieve this is to limit the number of external calls the server must make to complete the request.
Caching involves storing a copy of data on the server (or another data store that is more easily
queried than the source of the data). Web applications, and especially non-SPA traditional web
applications, need to build the entire user interface with every request. This frequently involves
making many of the same database queries repeatedly from one user request to the next. In most
cases, this data changes rarely, so there is little reason to constantly request it from the database.
ASP.NET Core supports response caching, for caching entire pages, and data caching, which supports
more granular caching behavior.

When implementing caching, it's important to keep in mind separation of concerns. Avoid
implementing caching logic in your data access logic, or in your user interface. Instead, encapsulate
caching in its own classes, and use configuration to manage its behavior. This follows the
Open/Closed and Single Responsibility principles, and will make it easier for you to manage how you
use caching in your application as it grows.

ASP.NET Core response caching

ASP.NET Core supports two levels of response caching. The first level does not cache anything on the
server, but adds HTTP headers that instruct clients and proxy servers to cache responses. This is
implemented by adding the ResponseCache attribute to individual controllers or actions:

[ResponseCache(Duration = 60)]

public IActionResult Contact()

{
ViewData["Message"] = "Your contact page.";
return View();

}

The previous example will result in the following header being added to the response, instructing
clients to cache the result for up to 60 seconds.

Cache-Control: public,max-age=60

In order to add server-side in-memory caching to the application, you must reference the
Microsoft. AspNetCore.ResponseCaching NuGet package, and then add the Response Caching
middleware. This middleware is configured in both ConfigureServices and Configure in Startup:

public void ConfigureServices(IServiceCollection services)

{
}

services.AddResponseCaching();

public void Configure(IApplicationBuilder app)

71 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://docs.microsoft.com/azure/storage/common/storage-introduction
https://docs.microsoft.com/azure/storage/common/storage-introduction

{
i

app.UseResponseCaching();

The Response Caching Middleware will automatically cache responses based on a set of conditions,
which you can customize. By default, only 200 (OK) responses requested via GET or HEAD methods
are cached. In addition, requests must have a response with a Cache-Control: public header, and
cannot include headers for Authorization or Set-Cookie. See a complete list of the caching conditions
used by the response caching middleware.

Data caching

Rather than (or in addition to) caching full web responses, you can cache the results of individual data
queries. For this, you can use in memory caching on the web server, or use a distributed cache. This
section will demonstrate how to implement in memory caching.

You add support for memory (or distributed) caching in ConfigureServices:

public void ConfigureServices(IServiceCollection services)

{

services.AddMemoryCache();
services.AddMvc();

}

Be sure to add the Microsoft.Extensions.Caching.Memory NuGet package as well.

Once you've added the service, you request IMemoryCache via dependency injection wherever you
need to access the cache. In this example, the CachedCatalogService is using the Proxy (or Decorator)
design pattern, by providing an alternative implementation of ICatalogService that controls access to
(or adds behavior to) the underlying CatalogService implementation.

public class CachedCatalogService : ICatalogService
{
private readonly IMemoryCache _cache;
private readonly CatalogService _catalogService;
private static readonly string _brandsKey = "brands";
private static readonly string _typeskKey = "types";
private static readonly TimeSpan _defaultCacheDuration = TimeSpan.FromSeconds(30);
public CachedCatalogService(IMemoryCache cache,
CatalogService catalogService)

{
_cache = cache;
_catalogService = catalogService;
}
public async Task<IEnumerable<SelectListItem>> GetBrands()
{
return await _cache.GetOrCreateAsync(_brandsKey, async entry =>
{
entry.SlidingExpiration = _defaultCacheDuration;
return await _catalogService.GetBrands();
})s
}

public async Task<Catalog> GetCatalogItems(int pageIndex, int itemsPage, int? brandID,
int? typeld)

72 CHAPTER 7 | Working with Data in ASP.NET Core Apps

https://docs.microsoft.com/aspnet/core/performance/caching/middleware#conditions-for-caching
https://docs.microsoft.com/aspnet/core/performance/caching/middleware#conditions-for-caching
https://docs.microsoft.com/aspnet/core/performance/caching/distributed

string cacheKey = $"items-{pageIndex}-{itemsPage}-{brandID}-{typeld}";
return await _cache.GetOrCreateAsync(cacheKey, async entry =>

{
entry.SlidingExpiration = _defaultCacheDuration;
return await _catalogService.GetCatalogItems(pageIndex, itemsPage, brandID,
typeld);
})s
}
public async Task<IEnumerable<SelectListItem>> GetTypes()
{
return await _cache.GetOrCreateAsync(_typesKey, async entry =>
{
entry.SlidingExpiration = _defaultCacheDuration;
return await _catalogService.GetTypes();
})s
}

}

To configure the application to use the cached version of the service, but still allow the service to get
the instance of CatalogService it needs in its constructor, you would add the following in
ConfigureServices:

services.AddMemoryCache();
services.AddScoped<ICatalogService, CachedCatalogService>();
services.AddScoped<CatalogService>();

With this in place, the database calls to fetch the catalog data will only be made once per minute,
rather than on every request. Depending on the traffic to the site, this can have a significant impact on
the number of queries made to the database, and the average page load time for the home page that
currently depends on all three of the queries exposed by this service.

An issue that arises when caching is implemented is stale data — that is, data that has changed at the
source but an out-of-date version remains in the cache. A simple way to mitigate this issue is to use
small cache durations, since for a busy application there is limited additional benefit to extending the
length data is cached. For example, consider a page that makes a single database query, and is
requested 10 times per second. If this page is cached for one minute, it will result in the number of
database queries made per minute to drop from 600 to 1, a reduction of 99.8%. If instead the cache
duration were made one hour, the overall reduction would be 99.997%, but now the likelihood and
potential age of stale data are both increased dramatically.

Another approach is to proactively remove cache entries when the data they contain is updated. Any
individual entry can be removed if its key is known:

_cache.Remove(cacheKey);

If your application exposes functionality for updating entries that it caches, you can remove the
corresponding cache entries in your code that performs the updates. Sometimes there may be many
different entries that depend on a particular set of data. In that case, it can be useful to create
dependencies between cache entries, by using a CancellationChangeToken. With a
CancellationChangeToken, you can expire multiple cache entries at once by canceling the token.

73 CHAPTER 7 | Working with Data in ASP.NET Core Apps

// configure CancellationToken and add entry to cache
var cts = new CancellationTokenSource();
_cache.Set("cts", cts);

_cache.Set(cachekey,

itemToCache,

new CancellationChangeToken(cts.Token));

// elsewhere, expire the cache by cancelling the token\
_cache.Get<CancellationTokenSource>("cts").Cancel();

Caching can dramatically improve the performance of web pages that repeatedly request the same
values from the database. Be sure to measure data access and page performance before applying
caching, and only apply caching where you see a need for improvement. Caching consumes web
server memory resources and increases the complexity of the application, so it's important you don't
prematurely optimize using this technique.

74 CHAPTER 7 | Working with Data in ASP.NET Core Apps

CHAPTER

Test ASP.NET Core MVC
apps

“If you don't like unit testing your product, most likely your customers won't like to test it, either.” _-
Anonymous-

Software of any complexity can fail in unexpected ways in response to changes. Thus, testing after
making changes is required for all but the most trivial (or least critical) applications. Manual testing is
the slowest, least reliable, most expensive way to test software. Unfortunately, if applications aren't
designed to be testable, it can be the only means available. Applications written to follow the
architectural principles laid out in chapter 4 should be unit testable. ASP.NET Core applications
support automated integration and functional testing.

Kinds of automated tests

There are many kinds of automated tests for software applications. The simplest, lowest level test is
the unit test. At a slightly higher level, there are integration tests and functional tests. Other kinds of
tests, such as Ul tests, load tests, stress tests, and smoke tests, are beyond the scope of this document.

Unit tests

A unit test tests a single part of your application’s logic. One can further describe it by listing some of
the things that it isn't. A unit test doesn't test how your code works with dependencies or
infrastructure — that's what integration tests are for. A unit test doesn't test the framework your code
is written on — you should assume it works or, if you find it doesn't, file a bug and code a workaround.
A unit test runs completely in memory and in process. It doesn't communicate with the file system, the
network, or a database. Unit tests should only test your code.

Unit tests, by virtue of the fact that they test only a single unit of your code, with no external
dependencies, should execute extremely quickly. Thus, you should be able to run test suites of
hundreds of unit tests in a few seconds. Run them frequently, ideally before every push to a shared
source control repository, and certainly with every automated build on your build server.

Integration tests

Although it's a good idea to encapsulate your code that interacts with infrastructure like databases
and file systems, you will still have some of that code, and you will probably want to test it.

75 CHAPTER 8 | Test ASP.NET Core MVC apps

Additionally, you should verify that your code’s layers interact as you expect when your application’s
dependencies are fully resolved. This is the responsibility of integration tests. Integration tests tend to
be slower and more difficult to set up than unit tests, because they often depend on external
dependencies and infrastructure. Thus, you should avoid testing things that could be tested with unit
tests in integration tests. If you can test a given scenario with a unit test, you should test it with a unit
test. If you can't, then consider using an integration test.

Integration tests will often have more complex setup and teardown procedures than unit tests. For
example, an integration test that goes against an actual database will need a way to return the
database to a known state before each test run. As new tests are added and the production database
schema evolves, these test scripts will tend to grow in size and complexity. In many large systems, it is
impractical to run full suites of integration tests on developer workstations before checking in
changes to shared source control. In these cases, integration tests may be run on a build server.

Functional tests

Integration tests are written from the perspective of the developer, to verify that some components of
the system work correctly together. Functional tests are written from the perspective of the user, and
verify the correctness of the system based on its requirements. The following excerpt offers a useful
analogy for how to think about functional tests, compared to unit tests:

“Many times the development of a system is likened to the building of a house. While this analogy
isn't quite correct, we can extend it for the purposes of understanding the difference between unit
and functional tests. Unit testing is analogous to a building inspector visiting a house’s construction
site. He is focused on the various internal systems of the house, the foundation, framing, electrical,
plumbing, and so on. He ensures (tests) that the parts of the house will work correctly and safely, that
is, meet the building code. Functional tests in this scenario are analogous to the homeowner visiting
this same construction site. He assumes that the internal systems will behave appropriately, that the
building inspector is performing his task. The homeowner is focused on what it will be like to live in
this house. He is concerned with how the house looks, are the various rooms a comfortable size, does
the house fit the family's needs, are the windows in a good spot to catch the morning sun. The
homeowner is performing functional tests on the house. He has the user’s perspective. The building
inspector is performing unit tests on the house. He has the builder's perspective.”

Source: Unit Testing versus Functional Tests

I'm fond of saying "As developers, we fail in two ways: we build the thing wrong, or we build the
wrong thing.” Unit tests ensure you are building the thing right; functional tests ensure you are
building the right thing.

Since functional tests operate at the system level, they may require some degree of Ul automation.
Like integration tests, they usually work with some kind of test infrastructure as well. This makes them
slower and more brittle than unit and integration tests. You should have only as many functional tests
as you need to be confident the system is behaving as users expect.

Testing Pyramid
Martin Fowler wrote about the testing pyramid, an example of which is shown in Figure 9-1.

76 CHAPTER 8 | Test ASP.NET Core MVC apps

https://www.softwaretestingtricks.com/2007/01/unit-testing-versus-functional-tests.html

Functional
Tests

Integration

EN S

Unit
Tests

Figure 9-1. Testing Pyramid

The different layers of the pyramid, and their relative sizes, represent different kinds of tests and how
many you should write for your application. As you can see, the recommendation is to have a large
base of unit tests, supported by a smaller layer of integration tests, with an even smaller layer of
functional tests. Each layer should ideally only have tests in it that cannot be performed adequately at
a lower layer. Keep the testing pyramid in mind when you are trying to decide which kind of test you
need for a particular scenario.

What to test

A common problem for developers who are inexperienced with writing automated tests is coming up
with what to test. A good starting point is to test conditional logic. Anywhere you have a method with
behavior that changes based on a conditional statement (if-else, switch, and so on), you should be
able to come up with at least a couple of tests that confirm the correct behavior for certain conditions.
If your code has error conditions, it's good to write at least one test for the "happy path” through the
code (with no errors), and at least one test for the “sad path” (with errors or atypical results) to
confirm your application behaves as expected in the face of errors. Finally, try to focus on testing
things that can fail, rather than focusing on metrics like code coverage. More code coverage is better
than less, generally. However, writing a few more tests of a complex and business-critical method is
usually a better use of time than writing tests for auto-properties just to improve test code coverage
metrics.

77 CHAPTER 8 | Test ASP.NET Core MVC apps

Organizing test projects

Test projects can be organized however works best for you. It's a good idea to separate tests by type
(unit test, integration test) and by what they are testing (by project, by namespace). Whether this
separation consists of folders within a single test project, or multiple test projects, is a design decision.
One project is simplest, but for large projects with many tests, or in order to more easily run different
sets of tests, you might want to have several different test projects. Many teams organize test projects
based on the project they are testing, which for applications with more than a few projects can result
in a large number of test projects, especially if you still break these down according to what kind of
tests are in each project. A compromise approach is to have one project per kind of test, per
application, with folders inside the test projects to indicate the project (and class) being tested.

A common approach is to organize the application projects under a ‘src’ folder, and the application’s
test projects under a parallel ‘tests’ folder. You can create matching solution folders in Visual Studio, if
you find this organization useful.

Solution Explorer

5] Solution 'eShopOnWeb' (6 projects)
4 fm] src
B ApplicationCore

[Infrastructure
b siz] Web

4 fm] tests
[+ FunctionalTests
[IntegrationTests
b UnitTests

Figure 9-2. Test organization in your solution

You can use whichever test framework you prefer. The xUnit framework works well and is what all of
the ASP.NET Core and EF Core tests are written in. You can add an xUnit test project in Visual Studio
using the template shown in Figure 9-3, or from the CLI using dotnet new xunit.

78 CHAPTER 8 | Test ASP.NET Core MVC apps

Add New Project ? *

P Recent NET Framework 4.6.1 ~ Sortby: Default

4 |nstalled

Console App (.NET Core) Visual C#
B conctro
o c* . . S - . y
ﬁ:i ! Class Library (.NET Core) Visual C# s

C#
E Unit Test Project (.NET Core) Visual C&#

CH#
Ii *Unit Test Project (NET Core) Visual C#

@ ASP.NET Core Web Application (MET Core) Visual C#

I Online

MName: FunctionalTests

Location: mith\github.com\eShopOnWeb'\tests -

Figure 9-3. Add an xUnit Test Project in Visual Studio

Test naming

Name your tests in a consistent fashion, with names that indicate what each test does. One approach
I've had great success with is to name test classes according to the class and method they are testing.
This results in many small test classes, but it makes it extremely clear what each test is responsible for.
With the test class name set up to identify the class and method to be tested, the test method name
can be used to specify the behavior being tested. This should include the expected behavior and any
inputs or assumptions that should yield this behavior. Some example test names:

. CatalogControllerGetImage.CallsImageServiceWithId

. CatalogControllerGetImage.LogsWarningGivenImageMissingException

. CatalogControllerGetImage.ReturnsFileResultWithBytesGivenSuccess

. CatalogControllerGetImage.ReturnsNotFoundResultGivenImageMissingException

A variation of this approach ends each test class name with “Should” and modifies the tense slightly:
. CatalogControllerGetImageShould.CallImageServiceWithId

. CatalogControllerGetImageShould.LogWarningGivenImageMissingException

79 CHAPTER 8 | Test ASP.NET Core MVC apps

Some teams find the second naming approach clearer, though slightly more verbose. In any case, try
to use a naming convention that provides insight into test behavior, so that when one or more tests
fail, it's obvious from their names what cases have failed. Avoid naming your tests vaguely, such as
ControllerTests.Test1, as these offer no value when you see them in test results.

If you follow a naming convention like the one above that produces many small test classes, it's a
good idea to further organize your tests using folders and namespaces. Figure 9-4 shows one
approach to organizing tests by folder within several test projects.

fal Solution 'eShopOnWeb' (6 projects)
4 gl src
B ApplicationCore
b Infrastructure
b afz] Web
4 o] tests
4 FunctionalTests
[=B Dependencies
4] Web
4 | Controllers
I +c* BaseWebTest.cs
P +c* CatalogControllerGetlmage.cs
4 IntegrationTests
=B Dependencies
4 fml Infrastructure
4] File
P ©* LocalFilelmageServiceGetlmageBytesByld.cs
4 UnitTests
[+ =8 Dependencies
4] Web
4 @] Controllers
P c* CatalegControllerGetlmage.cs

Figure 9-4. Organizing test classes by folder based on class being tested.

If a particular application class has many methods being tested (and thus many test classes), it may
make sense to place these in a folder corresponding to the application class. This organization is no
different than how you might organize files into folders elsewhere. If you have more than three or four
related files in a folder containing many other files, it's often helpful to move them into their own
subfolder.

Unit testing ASP.NET Core apps

In a well-designed ASP.NET Core application, most of the complexity and business logic will be
encapsulated in business entities and a variety of services. The ASP.NET Core MVC app itself, with its
controllers, filters, viewmodels, and views, should require very few unit tests. Much of the functionality
of a given action lies outside the action method itself. Testing whether routing works correctly, or
global error handling, cannot be done effectively with a unit test. Likewise, any filters, including model

80 CHAPTER 8 | Test ASP.NET Core MVC apps

validation and authentication and authorization filters, cannot be unit tested with a test targeting a
controller’'s action method. Without these sources of behavior, most action methods should be
trivially small, delegating the bulk of their work to services that can be tested independent of the
controller that uses them.

Sometimes you'll need to refactor your code in order to unit test it. Frequently this involves identifying
abstractions and using dependency injection to access the abstraction in the code you'd like to test,
rather than coding directly against infrastructure. For example, consider this simple action method for
displaying images:

[HttpGet (" [controller]/pic/{id}")]
public IActionResult GetImage(int id)

{
var contentRoot = _env.ContentRootPath + "//Pics";
var path = Path.Combine(contentRoot, id + ".png");
Byte[] b = System.IO.File.ReadAllBytes(path);
return File(b, "image/png");

}

Unit testing this method is made difficult by its direct dependency on System.I0.File, which it uses
to read from the file system. You can test this behavior to ensure it works as expected, but doing so
with real files is an integration test. It's worth noting you can't unit test this method's route — you'll see
how to do this with a functional test shortly.

If you can't unit test the file system behavior directly, and you can't test the route, what is there to
test? Well, after refactoring to make unit testing possible, you may discover some test cases and
missing behavior, such as error handling. What does the method do when a file isn't found? What
should it do? In this example, the refactored method looks like this:

[HttpGet("[controller]/pic/{id}")]
public IActionResult GetImage(int id)

{
byte[] imageBytes;
try
{
imageBytes = _imageService.GetImageBytesById(id);
}
catch (CatalogImageMissingException ex)
{
_logger.LogWarning($"No image found for id: {id}");
return NotFound();
}
return File(imageBytes, "image/png");
}

_logger and _imageService are both injected as dependencies. Now you can test that the same ID
that is passed to the action method is passed to _imageService, and that the resulting bytes are
returned as part of the FileResult. You can also test that error logging is happening as expected, and
that a NotFound result is returned if the image is missing, assuming this is important application
behavior (that is, not just temporary code the developer added to diagnose an issue). The actual file
logic has moved into a separate implementation service, and has been augmented to return an
application-specific exception for the case of a missing file. You can test this implementation
independently, using an integration test.

81 CHAPTER 8 | Test ASP.NET Core MVC apps

In most cases, you'll want to use global exception handlers in your controllers, so the amount of logic
in them should be minimal and probably not worth unit testing. Do most of your testing of controller
actions using functional tests and the TestServer class described below.

Integration testing ASP.NET Core apps

Most of the integration tests in your ASP.NET Core apps should be testing services and other
implementation types defined in your Infrastructure project. For example, you could test that EF Core
was successfully updating and retrieving the data that you expect from your data access classes
residing in the Infrastructure project. The best way to test that your ASP.NET Core MVC project is
behaving correctly is with functional tests that run against your app running in a test host.

Functional testing ASP.NET Core apps

For ASP.NET Core applications, the TestServer class makes functional tests fairly easy to write. You
configure a TestServer using a WebHostBuilder (or HostBuilder) directly (as you normally do for
your application), or with the WebApplicationFactory type (available since version 2.1). Try to match
your test host to your production host as closely as possible, so your tests exercise behavior similar to
what the app will do in production. The WebApplicationFactory class is helpful for configuring the
TestServer's ContentRoot, which is used by ASP.NET Core to locate static resource like Views.

You can create simple functional tests by creating a test class that implements
IClassFixture<WebApplicationFactory<TEntry>> where TEntry is your web application’s Startup class.
With this in place, your test fixture can create a client using the factory’'s CreateClient method:

public class BasicWebTests : IClassFixture<WebApplicationFactory<Startup>>

{
protected readonly HttpClient _client;

public BaseWebTest(WebApplicationFactory<Startup> factory)
{

}

_client = factory.CreateClient();

// write tests that use _client

}

Frequently, you'll want to perform some additional configuration of your site before each test runs,
such as configuring the application to use an in memory data store and then seeding the application
with test data. To do this, you should create your own subclass of WebApplicationFactory <TEntry>
and override its ConfigureWebHost method. The example below is from the eShopOnWeb
FunctionalTests project and is used as part of the tests on the main web application.

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Mvc.Testing;

using Microsoft.EntityFrameworkCore;

using Microsoft.eShopWeb.Infrastructure.Data;
using Microsoft.eShopWeb.Infrastructure.Identity;
using Microsoft.eShopWeb.Web;

82 CHAPTER 8 | Test ASP.NET Core MVC apps

https://docs.microsoft.com/ef/core/miscellaneous/testing/
https://docs.microsoft.com/ef/core/miscellaneous/testing/

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using System;

namespace Microsoft.eShopWeb.FunctionalTests.Web

{
public class WebTestFixture : WebApplicationFactory<Startup>

{

protected override void ConfigureWebHost(IWebHostBuilder builder)

{

builder.UseEnvironment("Testing");

builder.ConfigureServices(services =>

{

services.AddEntityFrameworkInMemoryDatabase();

// Create a new service provider.

var provider = services
.AddEntityFrameworkInMemoryDatabase()
.BuildServiceProvider();

// Add a database context (ApplicationDbContext) using an in-memory
// database for testing.
services.AddDbContext<CatalogContext>(options =>
{
options.UseInMemoryDatabase("InMemoryDbForTesting");
options.UseInternalServiceProvider(provider);

s

services.AddDbContext<AppIdentityDbContext>(options =>
{
options.UseInMemoryDatabase("Identity");
options.UseInternalServiceProvider(provider);

1)

// Build the service provider.
var sp = services.BuildServiceProvider();

// Create a scope to obtain a reference to the database

// context (ApplicationDbContext).

using (var scope = sp.CreateScope())

{
var scopedServices = scope.ServiceProvider;
var db = scopedServices.GetRequiredService<CatalogContext>();
var loggerFactory =

scopedServices.GetRequiredService<ILoggerFactory>();

var logger = scopedServices
.GetRequiredService<ILogger<WebTestFixture>>();

// Ensure the database is created.
db.Database.EnsureCreated();

try

{
// Seed the database with test data.

CatalogContextSeed.SeedAsync(db, loggerFactory).Wait();

// seed sample user data

var userManager =
scopedServices.GetRequiredService<UserManager<ApplicationUser>>();

83 CHAPTER 8 | Test ASP.NET Core MVC apps

var roleManager =
scopedServices.GetRequiredService<RoleManager<IdentityRole>>();

AppIdentityDbContextSeed.SeedAsync(userManager,
roleManager).Wait();

}
catch (Exception ex)
{
logger.LogError(ex, $"An error occurred seeding the " +
"database with test messages. Error: {ex.Messagel}");
}

s

}

Tests can make use of this custom WebApplicationFactory by using it to create a client and then
making requests to the application using this client instance. The application will have data seeded
that can be used as part of the test’s assertions. The following test verifies that the home page of the
eShopOnWeb application loads correctly and includes a product listing that was added to the
application as part of the seed data.

using Microsoft.eShopWeb.FunctionalTests.Web;
using System.Net.Http;

using System.Threading.Tasks;

using Xunit;

namespace Microsoft.eShopWeb.FunctionalTests.WebRazorPages

{
[Collection("Sequential™)]

public class HomePageOnGet : IClassFixture<WebTestFixture>

{
public HomePageOnGet(WebTestFixture factory)
{

}

public HttpClient Client { get; }

Client = factory.CreateClient();

[Fact]
public async Task ReturnsHomePageWithProductListing()

{
// Arrange & Act

var response = await Client.GetAsync("/");
response.EnsureSuccessStatusCode();
var stringResponse = await response.Content.ReadAsStringAsync();

// Assert
Assert.Contains(".NET Bot Black Sweatshirt", stringResponse);

}

This functional test exercises the full ASP.NET Core MVC / Razor Pages application stack, including all
middleware, filters, binders, etc. that may be in place. It verifies that a given route ("/") returns the
expected success status code and HTML output. It does so without setting up a real web server, and
so avoids much of the brittleness that using a real web server for testing can experience (for example,
problems with firewall settings). Functional tests that run against TestServer are usually slower than

84 CHAPTER 8 | Test ASP.NET Core MVC apps

integration and unit tests, but are much faster than tests that would run over the network to a test
web server. Use functional tests to ensure your application’s front-end stack is working as expected.
These tests are especially useful when you find duplication in your controllers or pages and you
address the duplication by adding filters. Ideally, this refactoring won’t change the behavior of the
application, and a suite of functional tests will verify this is the case.

References — Test ASP.NET Core MVC apps

. Testing in ASP.NET Core
https://docs.microsoft.com/aspnet/core/testing/

. Unit Test Naming Convention
https://ardalis.com/unit-test-naming-convention

. Testing EF Core
https://docs.microsoft.com/ef/core/miscellaneous/testing/

. Integration tests in ASP.NET Core
https://docs.microsoft.com/aspnet/core/test/integration-tests

85 CHAPTER 8 | Test ASP.NET Core MVC apps

https://docs.microsoft.com/aspnet/core/testing/
https://ardalis.com/unit-test-naming-convention
https://docs.microsoft.com/ef/core/miscellaneous/testing/
https://docs.microsoft.com/aspnet/core/test/integration-tests

CHAPTER 9

Development process for
Azure

“With the cloud, individuals and small businesses can snap their fingers and instantly set up enterprise-
class services.”
- Roy Stephan

Vision
Develop well-designed ASP .NET Core applications the way you like, using Visual Studio or the dotnet
CLI and Visual Studio Code or your editor of choice.

Development environment for ASP.NET Core apps

Development tools choices: IDE or editor

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has you
covered when developing ASP.NET Core applications.

Visual Studio 2019. Visual Studio 2019 is the best-in-class IDE for developing applications for
ASP.NET Core. It offers a host of features that increase developer productivity. You can use it to
develop the application, then analyze its performance and other characteristics. The integrated
debugger lets you pause code execution and step back and forth through code on the fly as it's
running. The built-in test runner lets you organize your tests and their results and can even perform
live unit testing while you're coding. Using Live Share, you can collaborate in real time with other
developers, sharing your code session seamlessly over the network. And when you're ready, Visual
Studio includes everything you need to publish your application to Azure or wherever you might host
it.

Download Visual Studio 2019

Visual Studio Code and dotnet CLI (Cross-Platform Tools for Mac, Linux and Windows). If you prefer
a lightweight and cross-platform editor supporting any development language, you can use Microsoft
Visual Studio Code and the dotnet CLI. These products provide a simple yet robust experience that
streamlines the developer workflow. Additionally, Visual Studio Code supports extensions for C# and
web development, providing intellisense and shortcut-tasks within the editor.

86 CHAPTER 9 | Development process for Azure

https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs

Download the .NET Core SDK

Download Visual Studio Code

Development workflow for Azure-hosted ASP.NET
Core apps

The application development lifecycle starts from each developer’s machine, coding the app using
their preferred language and testing it locally. Developers may choose their preferred source control
system and can configure Continuous Integration (Cl) and/or Continuous Delivery/Deployment (CD)
using a build server or based on built-in Azure features.

To get started with developing an ASP.NET Core application using Cl/CD, you can use Azure DevOps

Services or your organization’s own Team Foundation Server (TFS).

Initial setup

To create a release pipeline for your app, you need to have your application code in source control.
Set up a local repository and connect it to a remote repository in a team project. Follow these
instructions:

. Share your code with Git and Visual Studio or

. Share your code with TFVC and Visual Studio

Create an Azure App Service where you'll deploy your application. Create a Web App by going to the
App Services blade on the Azure portal. Click +Add, select the Web App template, click Create, and
provide a name and other details. The web app will be accessible from {name}.azurewebsites.net.

87 CHAPTER 9 | Development process for Azure

https://dotnet.microsoft.com/download
https://code.visualstudio.com/download
https://docs.microsoft.com/azure/devops/git/share-your-code-in-git-vs
https://docs.microsoft.com/azure/devops/tfvc/share-your-code-in-tfvc-vs

ZUre MNew » Web + Mobile

[4 Web + Mobile

M~ Search the marketplace

=

MARKETPLACE See all FEATURED APPS See all
e
. Compute > Web App

Metworking > @ developmen sloyment, and
G sCaling oplions TOT your web app

Storage >

Mobile App

® Web + Mobile > e el e e
2 Databases > - Andr
- vt

Data + Analytics > Logic App
S Al + Cognitive Services > ["}] _ ___ ; .;: —

Figure 10-1. Creating a new Azure App Service Web App in the Azure Portal.

Your Cl build process will perform an automated build whenever new code is committed to the
project’s source control repository. This gives you immediate feedback that the code builds (and,
ideally, passes automated tests) and can potentially be deployed. This Cl build will produce a web
deploy package artifact and publish it for consumption by your CD process.

Define your Cl build process

Be sure to enable continuous integration so the system will queue a build whenever someone on your
team commits new code. Test the build and verify that it is producing a web deploy package as one of
its artifacts.

When a build succeeds, your CD process will deploy the results of your Cl build to your Azure web
app. To configure this, you create and configure a Release, which will deploy to your Azure App
Service.

Deploy an Azure web app

Once your CI/CD pipeline is configured, you can simply make updates to your web app and commit
them to source control to have them deployed.

Workflow for developing Azure-hosted ASP.NET Core applications

Once you have configured your Azure account and your Cl/CD process, developing Azure-hosted
ASP.NET Core applications is simple. The following are the basic steps you usually take when building
an ASP.NET Core app, hosted in Azure App Service as a Web App, as illustrated in Figure 10-2.

88 CHAPTER 9 | Development process for Azure

https://docs.microsoft.com/azure/devops/pipelines/ecosystems/dotnet-core
https://docs.microsoft.com/azure/devops/pipelines/targets/webapp

end-to-end development / deployment workflow

. 3. 4. 5.
Application Build, CI, Run, Manage

Code Repo Integrate, Test CD, Deploy

App Service
Web App

(SCC
O T')‘a & > Microsoft

Azure

Monitor and Diagnose
Code
Test
Run

Il =0

VS Application Insi Outer—LOOp

Debug
Commit

Dev Environment

Figure 10-2. Step-by-step workflow for building ASP.NET Core apps and hosting them in Azure

Step 1. Local dev environment inner loop

Developing your ASP.NET Core application for deployment to Azure is no different from developing
your application otherwise. Use the local development environment you're comfortable with, whether
that's Visual Studio 2017 or the dotnet CLI and Visual Studio Code or your preferred editor. You can
write code, run and debug your changes, run automated tests, and make local commits to source
control until you're ready to push your changes to your shared source control repository.

Step 2. Application code repository

Whenever you're ready to share your code with your team, you should push your changes from your
local source repository to your team'’s shared source repository. If you've been working in a custom
branch, this step usually involves merging your code into a shared branch (perhaps by means of a pull

request).

Step 3. Build Server: Continuous integration. build, test, package

A new build is triggered on the build server whenever a new commit is made to the shared
application code repository. As part of the Cl process, this build should fully compile the application
and run automated tests to confirm everything is working as expected. The end result of the Cl
process should be a packaged version of the web app, ready for deployment.

Step 4. Build Server: Continuous delivery

Once a build has succeeded, the CD process will pick up the build artifacts produced. This will include
a web deploy package. The build server will deploy this package to Azure App Service, replacing any

89 CHAPTER 9 | Development process for Azure

https://docs.microsoft.com/azure/devops/git/pull-requests
https://docs.microsoft.com/azure/devops/git/pull-requests

existing service with the newly created one. Typically this step targets a staging environment, but
some applications deploy directly to production through a CD process.

Step 5. Azure App Service Web App

Once deployed, the ASP.NET Core application runs within the context of an Azure App Service Web
App. This Web App can be monitored and further configured using the Azure Portal.

Step 6. Production monitoring and diagnostics

While the Web App is running, you can monitor the health of the application and collect diagnostics
and user behavior data. Application Insights is included in Visual Studio, and offers automatic
instrumentation for ASP.NET apps. It can provide you with information on usage, exceptions, requests,
performance, and logs.

References

Build and Deploy Your ASP.NET Core App to Azure
https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

90 CHAPTER 9 | Development process for Azure

https://docs.microsoft.com/azure/devops/build-release/apps/aspnet/build-aspnet-core

CHAPTER

Azure hosting
recommendations for
ASP.NET Core web apps

“Line-of-business leaders everywhere are bypassing IT departments to get applications from the cloud
(also known as SaaS) and paying for them like they would a magazine subscription. And when the
service is no longer required, they can cancel the subscription with no equipment left unused in the
corner.”

- Daryl Plummer, Gartner analyst

Whatever your application’s needs and architecture, Microsoft Azure can support it. Your hosting
needs can be as simple as a static website or a sophisticated application made up of dozens of
services. For ASP.NET Core monolithic web applications and supporting services, there are several
well-known configurations that are recommended. The recommendations on this article are grouped
based on the kind of resource to be hosted, whether full applications, individual processes, or data.

Web applications
Web applications can be hosted with:
. App Service Web Apps

. Containers (several options)

. Virtual Machines (VMs)

Of these, App Service Web Apps is the recommended approach for most scenarios, including simple
container-based apps. For microservice architectures, consider a container-based approach. If you
need more control over the machines running your application, consider Azure Virtual Machines.

App Service Web Apps

App Service Web Apps offers a fully managed platform optimized for hosting web applications. It's a
platform as a service (PaaS) offering that lets you focus on your business logic, while Azure takes care
of the infrastructure needed to run and scale the app. Some key features of App Service Web Apps:

91 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

. DevOps optimization (continuous integration and delivery, multiple environments, A/B testing,
scripting support).

. Global scale and high availability.

. Connections to SaaS platforms and your on-premises data.
. Security and compliance.

. Visual Studio integration.

Azure App Service is the best choice for most web apps. Deployment and management are integrated
into the platform, sites can scale quickly to handle high traffic loads, and the built-in load balancing
and traffic manager provide high availability. You can move existing sites to Azure App Service easily
with an online migration tool, use an open-source app from the Web Application Gallery, or create a
new site using the framework and tools of your choice. The WebJobs feature makes it easy to add
background job processing to your App Service web app. If you have an existing ASP.NET application
hosted on-premises using a local database, there's a clear path to migrate the app to an App Service
Web App with an Azure SQL Database (or secure access to your on-premises database server, if
preferred).

@l Existing /-s Cloud IA Cloud-Optimized

NET applications (on-prem.) Infrastructure-Ready Existing .NET apps

ASP.NET

Monolithic or N-Tier

Monolithic or N-Tier

VMs (laaS Azure) Azure App Service

SQL Server VM

WebForms Azure Container Instance

Azure Web Apps
For Containers

Web API

| monottcor |
T
BT
s |

SignalR . :
Windows Containers

Your cu r'r'er
Monitoring Tools On VMs

Your current Deployment Azure SQL DB
Tools (Puppet, Chef, etc.)

Web Pages

Relational Database
(SQL, Oracle, MySQL, etc.)

Manitoring (App Insights)

Cl/CD (Azure DevOps)

i ﬁrEn-flt-

»] [
S | = =

A N]

In most cases, moving from a locally hosted ASP.NET app to an App Service Web App is a
straightforward process. Little or no modification should be required of the app itself, and it can
quickly start to take advantage of the many features that Azure App Service Web Apps offer.

92 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

In addition to apps that are not optimized for the cloud, Azure App Service Web Apps are an excellent
solution for many simple monolithic (non-distributed) applications, such as many ASP.NET Core apps.
In this approach, the architecture is basic and simple to understand and manage:

Azure Active App Service plan Azure SQL Database
Directory a

Logical server

1
! |
| |
i I
| |
! |
l |
i I
: |
! 1
! |
! |
| 1
i 1
! |
! |
! |
i |
1
e @Q @Q ;
Internet i >@ Database Database i
! |
: |
! [
| |
] I
1 I
| |
1 I
1 1
| 1
1 l
1 l
i 1
| 1
| 1
E |
I
i 1
1 |
1
1

A

| App Service
| web app
v
Z D
@NS)
N\ L 01
Azure DNS

Storage blob
Resource group [."]

A small number of resources in a single resource group is typically sufficient to manage such an app.
Apps that are typically deployed as a single unit, rather than those apps that are made up of many
separate processes, are good candidates for this basic architectural approach. Though architecturally
simple, this approach still allows the hosted app to scale both up (more resources per node) and out
(more hosted nodes) to meet any increase in demand. With autoscale, the app can be configured to
automatically adjust the number of nodes hosting the app based on demand and average load across
nodes.

App Service Web Apps for Containers

In addition to support for hosting web apps directly, App Service Web Apps for Containers can be
used to run containerized applications on Windows and Linux. Using this service, you can easily
deploy and run containerized applications that can scale with your business. The apps have all of the
features of App Service Web Apps listed above. In addition, Web Apps for Containers support
streamlined CI/CD with Docker Hub, Azure Container Registry, and GitHub. You can use Azure DevOps
to define build and deployment pipelines that publish changes to a registry. These changes can then
be tested in a staging environment and automatically deployed to production using deployment slots,
allowing zero-downtime upgrades. Rolling back to previous versions can be done just as easily.

There are a few scenarios where Web Apps for Containers make the most sense. If you have existing
apps that you can containerize, whether in Windows or Linux containers, you can host these easily
using this toolset. Simply publish your container and then configure Web Apps for Containers to pull
the latest version of that image from your registry of choice. This is a "lift and shift” approach to
migrating from classic app hosting models to a cloud-optimized model.

93 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/basic-web-app
https://azure.microsoft.com/services/app-service/containers/

E' Existing IA Cloud /A Cloud-Optimized

NET applications (on-prem.) Infrastructure-Ready Existing .NET apps

Monolithic or N-Tier Monolithic or N-Tier

Monolithic or N-Tier

VMs (laaS Azure) Azure App Service

SQL Server VM Azure Container Instance

WELrOUnrs

Web API Azure Web Apps
For Containers
SignalR | - -
Your cur’rer Windows Containers
Web Pages Monitoring Tools
Your current Deployment
WCF Tools (Puppet, Chef, etc.)

Monitoring (App Insights)

Relational Database
(SQL, Oracle, MySQlL, etc.)

CI/CD (Azure DevOps)

Microsoft

NET

Microsoft

NET

| |
A = =

This approach also works well if your development team is able to move to a container-based
development process. The “inner loop” of developing apps with containers includes building the app
with containers. Changes made to the code as well as to container configuration are pushed to source
control, and an automated build is responsible for publishing new container images to a registry like
Docker Hub or Azure Container Registry. These images are then used as the basis for additional
development, as well as for deployments to production, as shown in the following diagram:

Microsoft

94 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

End to End Docker DevOps Lifecycle Workflow

Azure
Web Apps for
Containers

4.
CD, deploy

3.
Build, Cl,

2.
Application
code repo
(SCQO)

O

integrate, test

Azure DevOps

Azure DevOps
.

b
. D & OB

- DTR DocxesHus
registry

docker push

<l 6. |

Monitor and diagnose

—0O
Illll — Outer loop

VS Application Insights

Dev environment

Developing with containers offers many advantages, especially when containers are used in
production. The same container configuration is used to host the app in each environment in which it
runs, from local development machine to build and test systems to production. This greatly reduces
the likelihood of defects resulting from differences in machine configuration or software versions.
Developers can also use whatever tools they're most productive with, including operating system,
since containers can run on any OS. In some cases, distributed applications involving many containers
may be very resource-intensive to run on a single development machine. In this scenario, it may make
sense to upgrade to using Kubernetes and Azure Dev Spaces, covered in the next section.

As portions of larger applications are broken up into their own smaller, independent microservices,
additional design patterns can be used to improve app behavior. Instead of working directly with
individual services, an APl gateway can simplify access and decouple the client from its back end.
Having separate service back ends for different front ends also allows services to evolve in concert
with their consumers. Common services can be accessed via a separate sidecar container, which might
include common client connectivity libraries using the ambassador pattern.

95 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

Microservices application

Backends for
Frontends
Microservice for m

AP| Gateway

Gateway

Routing Remote

service

desktop
Gateway
Offloading

Microservice

Ambassador

Gateway Microservice for /

Aggregation i,

Microservice

Client
application

Anti-corruption

layer

Legacy system

Learn more about design patterns to consider when building microservice-based systems.

Azure Kubernetes Service

Azure Kubernetes Service (AKS) manages your hosted Kubernetes environment, making it quick and
easy to deploy and manage containerized applications without container orchestration expertise. It
also eliminates the burden of ongoing operations and maintenance by provisioning, upgrading, and
scaling resources on demand, without taking your applications offline.

AKS reduces the complexity and operational overhead of managing a Kubernetes cluster by
offloading much of that responsibility to Azure. As a hosted Kubernetes service, Azure handles critical
tasks like health monitoring and maintenance for you. Also, you pay only for the agent nodes within
your clusters, not for the masters. As a managed Kubernetes service, AKS provides:

. Automated Kubernetes version upgrades and patching.

. Easy cluster scaling.

. Self-healing hosted control plane (masters).

. Cost savings - pay only for running agent pool nodes.

With Azure handling the management of the nodes in your AKS cluster, you no longer need to

perform many tasks manually, like cluster upgrades. Because Azure handles these critical maintenance
tasks for you, AKS doesn't provide direct access (such as with SSH) to the cluster.

Teams who are leveraging AKS can also take advantage of Azure Dev Spaces. Azure Dev Spaces helps
teams to focus on the development and rapid iteration of their microservice application by allowing
teams to work directly with their entire microservices architecture or application running in AKS. Azure
Dev Spaces also provides a way to independently update portions of your microservices architecture
in isolation without affecting the rest of the AKS cluster or other developers.

96 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

https://docs.microsoft.com/azure/architecture/microservices/design/patterns

http://dev.myapp.eus.azds.io

Azure Dev Spaces:

. Minimize local machine setup time and resource requirements

. Allow teams to iterate more rapidly

. Reduce number of integration environments required by team

. Remove need to mock certain services in distributed system when developing/testing

Learn more about Azure Dev Spaces

Azure Virtual Machines

If you have an existing application that would require substantial modifications to run in App Service,
you could choose Virtual Machines in order to simplify migrating to the cloud. However, correctly
configuring, securing, and maintaining VMs requires much more time and IT expertise compared to
Azure App Service. If you're considering Azure Virtual Machines, make sure you take into account the
ongoing maintenance effort required to patch, update, and manage your VM environment. Azure
Virtual Machines is infrastructure as a service (laaS), while App Service is PaaS. You should also
consider whether deploying your app as a Windows Container to Web App for Containers might be a
viable option for your scenario.

Logical processes

Individual logical processes that can be decoupled from the rest of the application may be deployed
independently to Azure Functions in a “serverless” manner. Azure Functions lets you just write the
code you need for a given problem, without worrying about the application or infrastructure to run it.
You can choose from a variety of programming languages, including C#, F#, Node,js, Python, and
PHP, allowing you to pick the most productive language for the task at hand. Like most cloud-based
solutions, you pay only for the amount of time your use, and you can trust Azure Functions to scale up
as needed.

Data

Azure offers a wide variety of data storage options, so that your application can use the appropriate
data provider for the data in question.

97 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

https://docs.microsoft.com/azure/dev-spaces/about

For transactional, relational data, Azure SQL Databases are the best option. For high performance
read-mostly data, a Redis cache backed by an Azure SQL Database is a good solution.

Unstructured JSON data can be stored in a variety of ways, from SQL Database columns to Blobs or
Tables in Azure Storage, to Azure Cosmos DB. Of these, Azure Cosmos DB offers the best querying
functionality, and is the recommended option for large numbers of JSON-based documents that must
support querying.

Transient command- or event-based data used to orchestrate application behavior can use Azure
Service Bus or Azure Storage Queues. Azure Service Bus offers more flexibility and is the
recommended service for non-trivial messaging within and between applications.

Architecture recommendations

Your application’s requirements should dictate its architecture. There are many different Azure
services available. Choosing the right one is an important decision. Microsoft offers a gallery of
reference architectures to help identify typical architectures optimized for common scenarios. You
may find a reference architecture that maps closely to your application’s requirements, or at least
offers a starting point.

Figure 11-1 shows an example reference architecture. This diagram describes a recommended
architecture approach for a Sitecore content management system website optimized for marketing.

@ e -~ i
Browser o
Sitecore Content
Managementon Web App

Redis Cache Sitecore Content Sitecore Analytics zure Search

on Azure SQL on Azure SQL
Sitecore Content

Delivery on Web App

@

Application Insights

Figure T1-1. Sitecore marketing website reference architecture.

References — Azure hosting recommendations

. Azure Solution Architectures
https://azure.microsoft.com/solutions/architecture/

98 CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

https://azure.microsoft.com/solutions/architecture/

99

Azure Basic Web Application Architecture
https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-
app/basic-web-app

Design Patterns for Microservices
https://docs.microsoft.com/azure/architecture/microservices/design/patterns

Azure Developer Guide
https://azure.microsoft.com/campaigns/developer-guide/

Web Apps overview
https://docs.microsoft.com/azure/app-service/app-service-web-overview

Web App for Containers
https://azure.microsoft.com/services/app-service/containers/

Introduction to Azure Kubernetes Service (AKS)
https://docs.microsoft.com/azure/aks/intro-kubernetes

CHAPTER 10 | Azure hosting recommendations for ASP.NET Core web apps

https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/basic-web-app
https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/basic-web-app
https://docs.microsoft.com/azure/architecture/microservices/design/patterns
https://azure.microsoft.com/campaigns/developer-guide/
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://azure.microsoft.com/services/app-service/containers/
https://docs.microsoft.com/azure/aks/intro-kubernetes

	Characteristics of Modern Web Applications
	Reference application: eShopOnWeb
	Reference Application

	Cloud-hosted and scalable
	Cross platform
	Modular and loosely coupled
	Easily tested with automated tests
	Traditional and SPA behaviors supported
	Simple development and deployment
	Traditional ASP.NET and Web Forms
	Blazor
	References – Modern Web Applications

	Choose Between Traditional Web Apps and Single Page Apps (SPAs)
	Blazor
	When to choose traditional web apps
	When to choose SPAs
	References – SPA Frameworks

	When to choose Blazor
	Decision table

	Architectural principles
	Common design principles
	Separation of concerns
	Encapsulation
	Dependency inversion
	Explicit dependencies
	Single responsibility
	Don’t repeat yourself (DRY)
	Persistence ignorance
	Bounded contexts

	Additional resources

	Common web application architectures
	What is a monolithic application?
	All-in-one applications
	What are layers?
	Traditional “N-Layer” architecture applications
	Clean architecture
	Organizing code in Clean Architecture
	Application Core types
	Infrastructure types
	UI layer types

	Monolithic applications and containers
	Monolithic application deployed as a container

	Docker support
	Troubleshooting Docker problems
	References – Common web architectures

	Common client-side web technologies
	HTML
	CSS
	CSS preprocessors

	JavaScript
	Legacy web apps with jQuery
	jQuery vs a SPA Framework
	Angular SPAs
	React
	Vue
	Choosing a SPA Framework
	References – Client Web Technologies

	Develop ASP.NET Core MVC apps
	MVC and Razor Pages
	Why Razor Pages?
	When to use MVC

	Mapping requests to responses
	References – Mapping Requests to Responses

	Working with dependencies
	Declare your dependencies

	Structuring the application
	Feature organization
	Cross-cutting concerns
	References – Structuring applications

	Security
	Authentication
	Authorization
	Claims
	Securing web APIs
	Custom Security

	References – Security

	Client communication
	References – Client Communication

	Domain-driven design – Should you apply it?
	When should you apply DDD
	When shouldn’t you apply DDD
	References – Domain-Driven Design

	Deployment
	References – Deployment

	Working with Data in ASP.NET Core Apps
	Entity Framework Core (for relational databases)
	The DbContext
	Configuring EF Core
	Fetching and storing Data
	Fetching related data
	Encapsulating data
	Resilient connections
	Execution strategies and explicit transactions using BeginTransaction and multiple DbContexts

	References – Entity Framework Core

	EF Core or micro-ORM?
	SQL or NoSQL
	Azure Cosmos DB
	Other persistence options
	Caching
	ASP.NET Core response caching
	Data caching

	Test ASP.NET Core MVC apps
	Kinds of automated tests
	Unit tests
	Integration tests
	Functional tests
	Testing Pyramid
	What to test

	Organizing test projects
	Test naming

	Unit testing ASP.NET Core apps
	Integration testing ASP.NET Core apps
	Functional testing ASP.NET Core apps
	References – Test ASP.NET Core MVC apps

	Development process for Azure
	Vision
	Development environment for ASP.NET Core apps
	Development tools choices: IDE or editor

	Development workflow for Azure-hosted ASP.NET Core apps
	Initial setup
	Workflow for developing Azure-hosted ASP.NET Core applications
	Step 1. Local dev environment inner loop
	Step 2. Application code repository
	Step 3. Build Server: Continuous integration. build, test, package
	Step 4. Build Server: Continuous delivery
	Step 5. Azure App Service Web App
	Step 6. Production monitoring and diagnostics

	References

	Azure hosting recommendations for ASP.NET Core web apps
	Web applications
	App Service Web Apps
	App Service Web Apps for Containers
	Azure Kubernetes Service
	Azure Virtual Machines

	Logical processes
	Data
	Architecture recommendations

